
IMPORTANT NOTES:

1) This manual is valid for the following Model and associated serial numbers:

MODEL SERIAL NO. REV. NO.

2) A Change Page may be included at the end of the manual. All applicable changes and
revision number changes are documented with reference to the equipment serial num-
bers. Before using this Instruction Manual, check your equipment serial number to
identify your model. If in doubt, contact your nearest Kepco Representative, or the
Kepco Documentation Office in New York, (718) 461-7000, requesting the correct
revision for your particular model and serial number.

3) The contents of this manual are protected by copyright. Reproduction of any part can

be made only with the specific written permission of Kepco, Inc.

 Data subject to change without notice.

KEPCO®
THE POWER SUPPLIER™

MODEL

OPERATOR’S MANUAL

KEPCO INC.

ORDER NO. REV. NO.

KEPCO, INC. O 131-38 SANFORD AVENUE O FLUSHING, NY. 11352 U.S.A. O TEL (718) 461-7000 O FAX (718) 767-1102

©1995, KEPCO, INC
P/N 243-0877

BIT 232, BIT 232-F
DIGITAL INTERFACE CARD

BIT 232, BIT 232-F
 INTERFACE CARD

TABLE OF CONTENTS

SECTION PAGE
SECTION 1 - INTRODUCTION
1.1 Scope of Manual ... 1-1
1.2 General Description... 1-1
1.3 Specifications, BIT 232/BIT 232-F... 1-1
1.4 Accessories ... 1-1

SECTION 2 - INSTALLATION
2.1 Unpacking and Inspection ... 2-1
2.2 Set Start-up DefaultS .. 2-1
2.2.1 Start-up Language Default... 2-1
2.2.2 Set Power Supply Identification Switch ... 2-1
2.3 Installation of BIT Card into the BOP .. 2-1
2.4 Input/OUtput Signals ... 2-5
2.5 RS 232 Connections ... 2-5

SECTION 3 - CALIBRATION
3.1 Equipment Required.. 3-1
3.2 Adjustment of the Bop ±10 Volt Calibration Controls (R31, R32).. 3-1
3.3 Adjustment of the Ammeter Zero (R50) .. 3-1
3.4 Adjustment Of The Output Voltage Zero (R81) ... 3-2
3.5 Adjustment of the Full Scale Output Voltage (R21)... 3-2
3.6 Voltage Reading Zero Calibration (R35) ... 3-3
3.7 Voltage Reading Calibration (R19).. 3-3
3.8 Adjustment of the Output Current Zero (R83) ... 3-4
3.9 Adjustment of the Full Scale Output Current (R22) ... 3-4
3.10 Current Reading Zero Calibration (R36).. 3-4
3.11 Current Reading Calibration (R20).. 3-5

SECTION 4 - OPERATION
4.1 General.. 4-1
4.2 RS232-C Bus Protocol .. 4-1
4.3 RS232 Implementation.. 4-1
4.4 SCPI Programming ... 4-2
4.4.1 SCPI Messages... 4-2
4.4.2 Common Commands/Queries ... 4-2
4.4.3 SCPI Subsystem Command/Query Structure.. 4-2
4.4.4 Program Message Structure.. 4-3
4.4.4.1 Keyword ... 4-3
4.4.4.2 Keyword Separator .. 4-5
4.4.4.3 Query Indicator .. 4-5
4.4.4.4 Data ... 4-6
4.4.4.5 Data Separator... 4-6
4.4.4.6 Message Unit Separator .. 4-6
4.4.4.7 Root Specifier .. 4-6
4.4.4.8 Message Terminator .. 4-6
4.4.5 Understanding The Command Structure ... 4-6
4.4.6 Program Message Syntax Summary ... 4-7
4.5 CIIL Programming ... 4-8
4.6 Programming Examples .. 4-8
BIT 232 022800 i

TABLE OF CONTENTS

SECTION PAGE
APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS

A.1 Introduction ..A-1

APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS

B.1 Introduction ..B-1

APPENDIX C - CIIL COMMAND DEFINITIONS

C.1 Introduction ..C-1

APPENDIX D - TERMINAL EMULATION PROGRAM

D.1 Introduction ..D-1

APPENDIX E - RS232 COMMAND LOOP PROGRAM

E.1 Introduction ..E-1

APPENDIX F - C LANGUAGE FUNCTIONS

F.1 Introduction .. F-1
F.2 Open Serial Port Using ROM BIOS Routine .. F-1
F.3 Put Character to Serial Port ... F-1
F.4 Send, Wait for Echo ... F-2
F.5 Get Character from Serial Port .. F-2
F.6 Check to See If a Character Was Received .. F-3
F.7 Send Command ... F-3
F.8 Send Command and Wait Until Ready .. F-4

APPENDIX G - BASIC LANGUAGE TERMINAL EMULATION

G.1 Introduction ... G-1
ii BIT 232 022800

LIST OF FIGURES

FIGURE TITLE PAGE
1-1 Remotely Controlled Power Supply Configurations Using Kepco Products... vi
2-1 Installation of BIT Card into BOP .. 2-2
2-2 BIT 232/BIT 232-F Switch and Adjustment Locations .. 2-4
2-3 RS 232C Connector .. 2-5
3-1 BOP Power Supply, Internal Calibration Control Locations .. 3-2
3-2 Current Shunt Connections... 3-5
4-1 Tree Diagram of SCPI Commands Used with BIT 232/BIT 232-F Interface Card 4-3
4-2 Message Structure.. 4-5
A-1 *CLS — Clear Status Command.. A-1
A-2 *ESE — Standard Event Status Enable Command ... A-2
A-3 *ESE? — Standard Event Status Enable Query.. A-2
A-4 *ESR? — Event Status Register Query .. A-3
A-5 *IDN? — Identification Query... A-3
A-6 *OPC — Operation Complete Command... A-4
A-7 *OPC? — Operation Complete Query ... A-4
A-8 *RST — Reset Command.. A-5
A-9 *SRE — Service Request Enable Command... A-6
A-10 *SRE? — Service Request Enable Query ... A-6
A-11 *STB? — Status Byte Register Query ... A-7
A-12 *TRG — Trigger Command ... A-7
A-13 *TST? — Self Test Query .. A-8
A-14 *WAI — Wait-to-continue Command.. A-8
B-1 INITiate[:IMMediate] Command ... B-1
B-2 INITiate:CONTinuous Command ... B-2
B-3 INITiate:CONTinuous Query .. B-2
B-4 MEASure:CURRent? and MEASure:VOLTage? Queries... B-3
B-5 CURRent Command .. B-4
B-6 CURRent Query ... B-4
B-7 CURRent:TRIGgered Command ... B-5
B-8 CURRent:TRIGgered Query .. B-5
B-9 VOLTage Command... B-6
B-10 VOLTage Query.. B-6
B-11 VOLTage:TRIGgered Command .. B-7
B-12 VOLTage:TRIGgered Query ... B-7
B-13 FUNCtion:MODE Command.. B-8
B-14 STATus:OPERation:CONDition Query... B-8
B-15 STATus:OPEReration:ENABle Command.. B-9
B-16 STATus:OPEReration:ENABle Query .. B-9
B-17 STATus:OPERation QUERY .. B-10
B-18 STATus:PRESet Command.. B-10
B-19 STATus:QUEStionable? Query .. B-11
B-20 STATus:QUEStionable:CONDition? Query .. B-11
B-21 STATus:QUEStionable:ENABle Command.. B-12
B-22 STATus:QUEStionable:ENABle? Query... B-12
B-23 SYSTem:ERRor? Query... B-13
B-24 SYSTem:LANGuage Command... B-13
C-1 FNC — Function Command... C-1
C-2 INX — Initiate Op Code Command.. C-2
C-3 FTH — Fetch Command.. C-2
C-4 SET Command .. C-3
C-5 RST — Reset Command ... C-4
C-6 CNF, IST — Confidence Test, Internal Self Test Commands.. C-4
C-7 STA — Status Command... C-5
C-8 GAL — Go to Alternate Language Command .. C-6
BIT 232 022800 iii/iv Blank)

BIT 232 022800 v

LIST OF TABLES

TABLE TITLE PAGE

1-1 Kepco BIT 232, 488 and 4882 Digital Programming Cards ..1-1
1-2 Applicability of BIT Interface Cards to Specific BOP Models ..1-2
1-3 Specifications, BIT 232 and BIT 232-F ...1-2
2-1 Power Supply Identification Switch S2 Setting ...2-4
2-2 Input/Output Pin Assignments ..2-5
3-1 BOP Power Supply, Internal Calibration Controls ...3-3
4-1 SCPI Command Index ..4-4
4-2 Rules Governing Shortform Keywords ..4-4
A-1 SCPI Common Command/query Index .. A-1
B-1 SCPI Subsystem Command/query Index .. B-1
C-1 CIIL Subsystem Command/query Index ..C-1
C-2 CIIL Error Messages ..C-5
C-3 CIIL Error Handling Utility Commands ...C-6
D-1 ROM BIOS Routines to be replaced with equivalent for non-IBM-PC-compatible PC’sD-1
E-1 ROM BIOS Routines to be replaced with equivalent for non-IBM-PC-compatible PC’s E-1

vi BIT 232 022
F
IG

U
R

E
 1

-1
.

 R
E

M
O

T
E

L
Y

 C
O

N
T

R
O

L
L

E
D

 P
O

W
E

R
 S

U
P

P
L

Y
 C

O
N

F
IG

U
R

A
T

IO
N

S
 U

S
IN

G
 K

E
P

C
O

 P
R

O
D

U
C

T
S

800

SECTION 1 - INTRODUCTION

1.1 SCOPE OF MANUAL

This manual contains instructions for the installation, operation and maintenance of the BIT
232 and BIT 232-F Interface Cards manufactured by Kepco, Inc., Flushing, NY, U.S.A. Refer-
ences to “BIT Card” refer to both models.

1.2 GENERAL DESCRIPTION

The Kepco BIT Card Series were designed as an accessory for the Kepco BOP series bipolar
power supplies. The BIT cards make it possible to control the BOP output by means of digital
input signals (see Figure 1-1). The BIT card acts as an interface between the digital data bus
and the BOP, accepting the digital input data and converting it to an analog signal, which in
turn, controls the BOP output. The BIT 232 provides RS232 communication capability. It is
fully compliant with SCPI and CIIL high level programming languages.

The BIT design group consists of five models. Field installable interface cards carry the prefix
“BIT”. BOP bipolar power supplies with an installed BIT card carry the suffixes shown in Table
1-1.

Except for the installation procedures, the BIT 232 and 232-F cards are identical. The BIT
232F includes a replacement transformer needed to modify earlier BOP Models indicated in
Table 1-2.

1.3 SPECIFICATIONS, BIT 232/BIT 232-F (SEE TABLE 1-3)

Refer to Table 1-3 for BIT 232/BIT 232-F specifications.

1.4 ACCESSORIES

The sample programs illustrated in Appendices E through G are available on 3.5 in. diskette,
Kepco P/N 254-0019.

TABLE 1-1. KEPCO BIT 232, 488 AND 4882 DIGITAL PROGRAMMING CARDS

FIELD INSTALLABLE
PROGRAMMING
CARD MODEL

FACTORY
INSTALLED

PROGRAMMING
CARD BOP SUFFIX

INPUT CODING

RESOLUTION

REMARKS
MAIN

CHANNEL
LIMIT

CHANNEL

BIT 232 (See Table 1-2)
BIT 232-F (See Table 1-2)

-232

SERIAL:
8 DATA BITS,

NO PARITY BIT
1 STOP BIT

– –
FOR THE

RS 232-C BUS

BIT 488-B -488-B BYTE-SERIAL
12 BITS

(BINARY)
8 BITS

(BINARY)
FOR THE
IEEE-488

OR GPIB BUS
BIT 488-D -488-D BYTE-SERIAL

3-DIGIT
(BCD)

2-DIGIT
(BCD)

BIT 4882 (See Table 1-2)
BIT 4882-F (See Table 1-2)

-4882 BYTE-SERIAL
12 BITS

(BINARY)
12 BITS

(BINARY)

BIT TMA-27 -TMA 2-WIRE-SERIAL
12 BITS

(BINARY)
12 BITS

(BINARY)
KEPCO

CONTROL BUS
BIT 232 OPR 022800 1-1

TABLE 1-2. APPLICABILITY OF BIT INTERFACE CARDS TO SPECIFIC BOP MODELS

BOP TO BE MODIFIED APPLICABLE
CARD

BOP TO BE MODIFIED APPLICABLE
CARDMODEL REVISION NO. MODEL REVISION NO.

20-5M
1 BIT 232-F, BIT 4882-F

50-8M
4 TO 9 BIT 232-F, BIT 4882-F

2 AND LATER BIT 232, BIT 4882 10 AND LATER BIT 232, BIT 4882

20-10M
12 TO 16 BIT 232-F, BIT 4882-F

72-3M
5 TO 9 BIT 232-F, BIT 4882-F

17 AND LATER BIT 232, BIT 4882 10 AND LATER BIT 232, BIT 4882

20-20M
8 TO 14 BIT 232-F, BIT 4882-F

72-6M
7 TO 13 BIT 232-F, BIT 4882-F

15 AND LATER BIT 232, BIT 4882 14 AND LATER BIT 232, BIT 4882

36-6M
12 TO 18 BIT 232-F, BIT 4882-F

100-1M
17 TO 23 BIT 232-F, BIT 4882-F

19 AND LATER BIT 232, BIT 4882 24 AND LATER BIT 232, BIT 4882

36-12M
7 TO 12 BIT 232-F, BIT 4882-F

100-2M
10 TO 14 BIT 232-F, BIT 4882-F

13 AND LATER BIT 232, BIT 4882 15 AND LATER BIT 232, BIT 4882

50-2M
16 TO 20 BIT 232-F, BIT 4882-F

100-4M
6 TO 13 BIT 232-F, BIT 4882-F

21 AND LATER BIT 232, BIT 4882 14 AND LATER BIT 232, BIT 4882

50-4M
6 TO 12 BIT 232-F, BIT 4882-F

200-1M
6 AND EARLIER BIT 232-F, BIT 4882-F

13 AND LATER BIT 232, BIT 4882 7 AND LATER BIT 232, BIT 4882

NOTE: For modification of BOP Models with revision numbers that do not appear in this table, contact Kepco for assistance.

TABLE 1-3. SPECIFICATIONS, BIT 232 AND BIT 232-F

SPECIFICATION DESCRIPTION

OUTPUT VOLTAGE (MAIN CHANNEL) 0 ± 10V

OUTPUT VOLTAGE (LIMIT CHANNEL) 0 to +10V

OUTPUT CURRENT (EACH CHANNEL) 0 to ± 2 mA max.

OUTPUT IMPEDANCE <0.05 ohms

TEMPERATURE COEFFICIENT
Full scale: ± 35 ppm/°C max
Zero: ± 20µV/°C max

OPTICAL ISOLATION
Digital and Analog grounds can be separated
by a maximum of 500 Volts.

DIGITAL INPUT FORMAT Serial, 8 data bits, no parity, 1 stop

POWER REQUIREMENT Supplied by BOP

RATING/DESCRIPTION CONDITION

PRGRAMMING RESOLUTION
VOLTAGE

0.024% 12 Bits
CURRENT

DATA READBACK ACCURACY
VOLTAGE

0.2%
of Max. Voltage

CURRENT of Max. Current
1-2 BIT 232 SVC 022800

SECTION 2 - INSTALLATION

2.1 UNPACKING AND INSPECTION

The BIT Card has been thoroughly inspected and tested prior to packing and is ready for opera-
tion following installation. Unpack, saving original packing material. If any indication of damage
is found, file a claim immediately with the responsible transport service.

2.2 SET START-UP DEFAULTS (SEE FIGURE 2-2)

Start-up defaults, consisting of Start-up Language and Power Supply Identification are initially
set by means of DIP switches as described in the following paragraphs.

2.2.1 START-UP LANGUAGE DEFAULT (SEE FIGURE 2-2)

DIP switch S1 position 6 sets the Start-up Language Default:

• OFF (0) = SCPI (factory default)

• ON (1) = CIIL

2.2.2 SET POWER SUPPLY IDENTIFICATION SWITCH (SEE FIGURE 2-2)

Power Supply Identification switch S2 (Figure 2-2) identifies the BOP model to be controlled by
the BIT Card. Set Switch S2 positions 1 through 6 in accordance with Table 2-1.

2.3 INSTALLATION OF BIT CARD INTO THE BOP

Refer to Figure 2-1 to install the BIT 232-F BIT Card.
BIT 232 022800 2-1

FIGURE 2-1. INSTALLATION OF BIT CARD INTO BOP (SHEET 1 OF 2)

NOTE: Step numbers coincide with encircled numbers on Figure 2-1, sheet 2.

Step 1. Disconnect a-c power from BOP by removing line cord.

Step 2. Remove BOP cover (see Section 5, Figure 5-1 of your BOP Instruction Manual).

Step 3. Remove and discard Rear Cover Plate (PN 128-1434) and associated hardware.

Step 4. Remove J204 Connector Assembly (PN 241-0680) from Location #1, save for Step 11.

Step 5. Locate Transformer T202 and note part number (stamped on top):
if PN 100-2167, remove from unit and discard (applicable to BIT 232-F only).
if PN 100-2354, unplug connector from Location #4 only.

Step 6. Locate Rear Bracket and note part number (stamped on outside left edge)
if PN 128-1566, remove and discard, replace with Bracket noted in Step 9.

Step 7. Unpack the BIT Card Installation Components

BIT 232-F: (Transformer, PCB Assembly, Cables #1 and #2, Connector Assembly, three
(3) Knurled Nuts, five (5) washers, Spacer and Bracket).

BIT 232: PCB Assembly, Cables #1 and #2, Connector Assembly, three (3) Knurled
Nuts, five (5) washers, Spacer and Bracket).

Step 8. BIT 232-F only: Mount Transformer T202 (PN 100-2354) if required (ref. Step 5, above).

Step 9. Mount Rear Bracket (PN 128-1810) if required, (ref. Step 6, above).

Step 10. Install PCB Assembly (PN 235-1166) into the guides, slide into position so that mounting
holes in PCB Assembly line up with the three mounting posts on the BOP mounting
bracket.

Step 11. Secure the BIT Card to the Mounting Posts using the Knurled Nuts and Lockwashers.
Mount Connector J204 (Ref. Step 4, above) into Location #3 using the Lockwashers, Hex
Spacer and Knurled Nut.

Step 12. Install Cable #1 (18-position connectors) to the BIT Card; mate the other end of the cable
with Location #1 on BOP A1 Assembly.

Step 13. Step 7AInstall Cable #2 (5-position connectors) to the BIT Card; mate the other end of the
cable with Location #2 on BOP A1 Assembly.

Step 14. Plug in 3 and 9 pin Connectors and Primary Leads from Transformer 100-2354 as shown.

Step 15. Mark "-232" after Model No. on Nameplate (see Detail A).

Step 16. Remove “Control Identification” label (PN 188-1107) and “Address Label” (PN 188-1012).
Affix revised “Control Identification” label (PN 188-1826) and “Address Label” (PN
188-1726) in vacated positions (with part numbers facing front panel).

Step 17. Affix “Connector Identification” label (PN 188-1912) to rear bracket (PN 188-1810) between
rear programming connector and Interface Card (see Detail C).

Step 18. Reinstall BOP cover.

Step 19. Perform calibration procedure detailed in Section 3 of this manual.
2-2 BIT 232 022800

FIGURE 2-1. INSTALLATION OF BIT CARD INTO BOP (SHEET 2 OF 2).
BIT 232 022800 2-3

FIGURE 2-2. BIT 232/BIT 232-F SWITCH AND ADJUSTMENT LOCATIONS

TABLE 2-1. POWER SUPPLY IDENTIFICATION SWITCH S2 SETTING

MODEL
SELECTOR SWITCH S2 SECTION HEX

VALUESW#1 SW#2 SW#3 SW#4 SW#5 SW#6

BOP 50-2M 0 0 0 0 0 0 00

100-1M 1 0 0 0 0 0 01

20-10M 0 1 0 0 0 0 02

36-6M 1 1 0 0 0 0 03

50-4M 0 0 1 0 0 0 04

72-3M 1 0 1 0 0 0 05

100-2M 0 1 1 0 0 0 05

20-20M 1 1 1 0 0 0 07

36-12M 0 0 0 1 0 0 08

50-8M 1 0 0 1 0 0 09

72-6M 0 1 0 1 0 0 0A

100-4M 1 1 0 1 0 0 0B

200-1M 1 0 1 1 0 0 0C

20-5M 0 1 1 1 0 0 0D

BOP 50-2M 0 0 0 0 0 0 00
2-4 BIT 232 022800

2.4 INPUT/OUTPUT SIGNALS

The RS232 port is a standard 9 pin connector (Figure 2-4) conforming to the IBM AT 9-Pin RS
232 Serial Interface. Refer to Table 2-3 for pin assignments.

FIGURE 2-3. RS 232C CONNECTOR

2.5 RS 232 CONNECTIONS

Since the BIT Card uses a 9-pin male connector, it is classified as a Data Terminal Equipment
(DTE) in accordance with the RS 232 Standard (equipment using a female connector is classi-
fied as Data Communication Equipment, DCE).

Either a DTE to DTE or a null modem cable is required to connect the BIT Card to an IBM-PC
compatible computer. This cable connects RXD at one end to TXD at the other end, DTR at one
end to DSR at the other end, and CTS at one end with RTS at the other end

TABLE 2-2. INPUT/OUTPUT PIN ASSIGNMENTS

PIN SIGNAL NAME FUNCTION

1 SGND Signal Ground

2 RXD Receive Data

3 TXD Transmit Data

4 DTR Data Terminal Ready

5 SGND Signal Ground

6 DSR Data Set Ready

7 RTS Request To Send

8 CTS Clear To Send

9 SGND Signal Ground
BIT 232 022800 2-5/2-6

 SECTION 3 - CALIBRATION

NOTE: The calibration procedures below are for the purpose of recalibration and for the case
where the BIT card is installed by the user. Unless otherwise noted, syntax is in SCPI.

3.1 EQUIPMENT REQUIRED

The following is a listing of equipment required for calibration of the BIT Card installed in a
Kepco “BOP” Series Power Supply:

A. Precision digital voltmeter (DVM), 5 digit minimum resolution (suggested).

B. An RS232 compatible Controller, (with appropriate software) connected to BOP Power Sup-
ply with an RS232 cable.

C. Precision four-terminal current shunt (with suitable power rating and tolerance for the cur-
rents to be measured).

3.2 ADJUSTMENT OF THE BOP ±10 VOLT CALIBRATION CONTROLS (R31, R32)

NOTE: BOP cover removal required for this procedure.

1. Connect a DVM to the REAR PROGRAMMING CONNECTOR (PC-12); between common
and pin 28 (+10Vdc REFERENCE).

2. Turn the BOP Power Supply “ON” and locate the calibration controls (see Figure 3-1, refer to
Table 3-1). Adjust R31 for +10.000Vdc.

3. Turn the BOP Power Supply “OFF” and connect DVM between common and pin 22 (–10Vdc
REFERENCE).

4. Turn the BOP Power Supply “ON”. Adjust R32 for –10.000Vdc.

5. Turn the BOP Power Supply “OFF”.

3.3 ADJUSTMENT OF THE AMMETER ZERO (R50)

1. Without a load connected to the BOP output, connect the DVM to the REAR PROGRAM-
MING CONNECTOR (PC-12); between COMMON and pin 10.

2. Turn the BOP Power Supply “ON” and locate AMMETER ZERO control R50 (see Figure 3-1,
refer to Table 3-1).

3. Adjust the control for zero, ±100 microvolts.

4. Turn the BOP Power Supply “OFF”.
BIT 232 022800 3-1

FIGURE 3-1. BOP POWER SUPPLY, INTERNAL CALIBRATION CONTROL LOCATIONS

3.4 ADJUSTMENT OF THE OUTPUT VOLTAGE ZERO (R81)

1. Without a load connected to the BOP output, connect a DVM between the FRONT PANEL
SENSING TERMINALS of the BOP Power Supply.

2. Turn the BOP Power Supply “ON”, program the BOP Power Supply to ZERO VOLTAGE
AND MAXIMUM CURRENT LIMIT.

3. Locate Eo COMP AMP ZERO control R81 (see Figure 3-1, refer to Table 3-1).

4. Adjust control R81 for zero, ±100 microvolts.

3.5 ADJUSTMENT OF THE FULL SCALE OUTPUT VOLTAGE (R21)

1. Program the BOP Power Supply for PLUS FULL SCALE VOLTAGE.

2. Locate VOLTAGE FULL SCALE control R21 (see Figures 2-1 and 3-1, refer to Table 3-1).

3. Adjust control R21 for FULL SCALE VOLTAGE, ±1 millivolt.

4. Program the BOP Power Supply for MINUS FULL SCALE. The output should be NEGATIVE
FULL SCALE ±0.024% (±1 LSB).
3-2 BIT 232 022800

3.6 VOLTAGE READING ZERO CALIBRATION (R35)

1. Program the BOP power supply for ZERO VOLTAGE and MAXIMUM CURRENT LIMIT.

2. ‘MEASURE’ (‘FETCH’ in CIIL syntax) the OUTPUT VOLTAGE of the BOP.

3. Locate VOLTAGE READBACK ZERO control R35 (see Figures 2-1 and 3-1, refer to Table
3-1).

4. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the VOLTAGE READING while adjusting
control R35 until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value is not 0.0.

5. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the VOLTAGE READING while adjusting
control R35 until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value is 0.0. Once a stable
value of 0.0 is reached, continue rotating R35 four full (360°) turns in the same direction. Ver-
ify VOLTAGE READING is 0.0.

3.7 VOLTAGE READING CALIBRATION (R19)

1. Program the BOP Power Supply for PLUS FULL SCALE VOLTAGE, less one percent (verify
by reading external DVM).

NOTE: If the unit is calibrated using CIIL syntax, send the ‘GAL’ command followed by
the ‘FØ ’ switch command.

2. ‘MEASURE’ (‘FETCH’ in CIIL syntax) the OUTPUT VOLTAGE of the BOP Power Supply.

3. Locate VOLTAGE READ. CAL. control R19 (see Figures 2-1 and 3-1, refer to Table 3-1).

TABLE 3-1. BOP POWER SUPPLY, INTERNAL CALIBRATION CONTROLS

REFERENCE
DESIGNATION

CONTROL
NAME

PURPOSE
ADJUSTMENT
PROCEDURE

(PAR.)

R19 VOLTAGE READING ‘MEASURE’d voltage reading adjustment 3.7

R20 CURRENT READING ‘MEASURE’d current reading adjustment 3.11

R21 VOLTAGE FULL SCALE Full scale output voltage adjustment 3.5

R22 CURRENT FULL SCALE Full scale output current adjustment 3.9

R31, R32 (±) 10V CAL. Reference voltage calibration 3.2

R35 VOLTAGE READBACK ZERO Aero output voltage adjustment 3.6

R36 CURRENT READBACK ZERO Zero output current adjustment 3.10

R50 AMMETER ZERO Sensing amplifier offset adjustment 3.3

R81 EO COMP AMP ZERO Voltage channel zero adjustment 3.4

R83 IO COMP AMP ZERO Current channel zero adjustment 3.8
BIT 232 022800 3-3

4. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the VOLTAGE READING while adjusting
control R19, until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value matches the pro-
grammed value.

5. Turn the BOP Power Supply “OFF”.

3.8 ADJUSTMENT OF THE OUTPUT CURRENT ZERO (R83)

1. With the BOP Power Supply “OFF”, connect a precision current shunt between the FRONT
PANEL OUTPUT TERMINALS.

2. Connect the DVM to the REAR PROGRAMMING CONNECTOR (PC 12); between COM-
MON and pin 10.

3. Turn the BOP “ON” and program the BOP Power Supply to ZERO CURRENT and MAXI-
MUM VOLTAGE LIMIT.

4. Locate Io COMP AMP ZERO control R83 (see Figure 3-1, refer to Table 3-1).

5. Adjust control R83 for zero, ±0.5 millivolts.

6. Turn the BOP Power Supply “OFF”.

3.9 ADJUSTMENT OF THE FULL SCALE OUTPUT CURRENT (R22)

1. With the BOP Power Supply “OFF”, connect the DVM to the PRECISION 4-TERMINAL
SHUNT (see Figure 3-2)

2. Turn the BOP Power Supply “ON” and program the BOP Power Supply for PLUS FULL
SCALE CURRENT and MAXIMUM VOLTAGE LIMIT.

3. Locate CURRENT FULL SCALE control R22 (see Figures 2-1 and 3-1, refer to Table 3-1).

4. Adjust control R22 for exactly FULL SCALE CURRENT.

5. Program the BOP Power Supply for MINUS FULL SCALE CURRENT. The output should be
NEGATIVE FULL SCALE within ±0.024% (±1 LSB or ±1 mA [which ever is greater]) of the
POSITIVE VALUE.

3.10 CURRENT READING ZERO CALIBRATION (R36)

1. Program the BOP Power Supply for ZERO CURRENT and MAXIMUM VOLTAGE LIMIT.

2. ‘MEASURE’ (‘FETCH’ in CIIL syntax) the OUTPUT CURRENT of the BOP Power Supply.

3. Locate CURRENT READBACK ZERO control R36 (see Figures 2-1 and 3-1, refer to Table
3-1).

4. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the CURRENT, while adjusting control
R36, until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value is not 0.0.

5. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the OUTPUT CURRENT while adjusting
control R36 until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value is 0.0. Once a stable
value of 0.0 is reached, continue rotating R36 four full (360°) turns in the same direction. Ver-
ify OUTPUT CURRRENT is 0.0.
3-4 BIT 232 022800

FIGURE 3-2. CURRENT SHUNT CONNECTIONS

3.11 CURRENT READING CALIBRATION (R20)

1. Program the BOP Power Supply for PLUS FULL SCALE CURRENT, less one percent (verify
by reading external DVM).

NOTE: If the unit is calibrated using CIIL syntax, send the ‘GAL’ command followed by the
‘FØ ’ switch command.

2. ‘MEASURE’ (‘FETCH’ in CIIL syntax) the OUTPUT CURRENT of the BOP Power Supply.

3. Locate CURRENT READ. CAL. control R20 (see Figures 2-1 and 3-1, refer to Table 3-1).

4. Continue to ‘MEASURE’ (‘FETCH’ in CIIL syntax) the CURRENT while adjusting control
R20, until the ‘MEASUREd’ (‘FETCHed’ in CIIL syntax) value matches the programmed
value.
BIT 232 022800 3-5/3-6

SECTION 4 - OPERATION

4.1 GENERAL

The Kepco BOP Power Supply, with an installed BIT 232/BIT 232-F Interface Card, may be pro-
grammed over the RS232C bus using either SCPI (Standard Commands for Programmable
Instruments) or CIIL (Control Interface Intermediate Language) commands. SCPI and CIIL pro-
vide a common language used in an automatic test system. (Refer to Table 2-3 for input/output
signal allocations.)

4.2 RS232-C BUS PROTOCOL

The BIT Card may be operated via an RS232-C terminal, or from a PC using a terminal emula-
tion program. The following settings must be observed:

• Baud rate: 9600

• Parity: None

• Data Bits 8

• Stop Bits 1

The above settings are established by the firmware and cannot be changed by the user
although firmware with alternate settings can be ordered. It is recommended that the user pro-
gram the computer’s serial interface to match the above setting. Refer to PAR. 2.5 for RS232
connections.

4.3 RS232 IMPLEMENTATION

The following paragraphs are provided to help the user understand how the RS232 interface is
implemented in the BIT 232 and BIT 232-F Interface Cards. Since the RS232 protocol does not
use a parity bit, the echo method is used to ensure reliable communication between the com-
mand originator (computer) and the BIT Card, thus avoiding a more complex “handshake” pro-
tocol.

When a character is received through the RS232 Interface, the software checks for the back-
space character, hex value 08 (08H). If the backspace character is not detected, the received
character is put in a buffer, the buffer pointer is incremented, and it is sent (echoed) back to the
originator. If the backspace character is detected, the buffer pointer is decremented, and three
characters are sent to the originator: Backspace (08H), Blank (20H), and Backspace (08H).
These three characters permit a direct interface with a terminal emulation program, effectively
erasing the last character.

When either a Carriage Return, CR, (0DH decimal value 13, 1310) or Line Feed, LF, (0AH, 1010)
is received by the BIT Card, the buffer contents are transferred to the SCPI (PAR.4.4) or CIIL
(PAR. 4.5) parser for analysis and execution of command(s). If the command requires the power
supply to respond, the response message is immediately returned to the command originator
via the RS232 interface.

To inform the command originator that the parsing and execution phases are complete, the BIT
Card returns the following three characters: CR, LF, and > (3EH, 6210). These characters create
the “prompt” effect if a terminal emulation program is the command(s) originator.
BIT 232 022800 4-1

Sample programs provided in Appendices D through G guide the user in setting up a program to
communicate with the BOP via the BIT 232/BIT 232-F Interface Card.

4.4 SCPI PROGRAMMING

SCPI (Standard Commands for Programmable Instruments) is a programming language con-
forming to the protocols and standards established by IEEE 488.2 (reference document ANSI/
IEEE Std 488.2, IEEE Standard Codes, Formats, Protocols, and Common Commands). SCPI com-
mands are sent to the BIT Card as output strings within the selected programming language
(PASCAL, BASIC, etc.) in accordance with the manufacturer’s requirements for the particular
interface card used.

Different programming languages (e.g., BASIC, C, PASCAL, etc.) have different ways of repre-
senting data that is to be put on the RS232C bus. It is up to the programmer to determine how to
output the character sequence required for the programming language used. Address informa-
tion must be included before the command sequence.

4.4.1 SCPI MESSAGES

There are two kinds of SCPI messages: program messages from controller to power supply,
and response messages from the power supply to the controller. Program messages consist of
one or more properly formatted commands/queries and instruct the power supply to perform an
action; the controller may send a program message at any time. Response messages consist of
formatted data; the data can contain information regarding operating parameters, power supply
state, status, or error conditions.

4.4.2 COMMON COMMANDS/QUERIES

Common commands and queries are defined by the IEEE 488.2 standard to perform overall
power supply functions (such as identification, status, or synchronization) unrelated to specific
power supply operation (such as setting voltage/current). Common commands and queries are
preceded by an asterisk (*) and are defined and explained in Appendix A (see Table 4-4). Refer
also to syntax considerations (PARs 4.4.3 through 4.4.6).

4.4.3 SCPI SUBSYSTEM COMMAND/QUERY STRUCTURE

Subsystem commands/queries are related to specific power supply functions (such as setting
output voltage, current limit, etc.) Figure 4-1 is a tree diagram illustrating the structure of SCPI
subsystem commands used in the BIT Card with the “root” at the left side, and specific com-
mands forming the branches. The subsystem commands are defined and explained in Appendix
B (see Table 4-4).
4-2 BIT 232 022800

FIGURE 4-1. TREE DIAGRAM OF SCPI COMMANDS USED WITH BIT 232/BIT 232-F INTERFACE CARD

4.4.4 PROGRAM MESSAGE STRUCTURE

SCPI program messages (commands from controller to power supply) consist of one or more
message units ending in a message terminator (required by Kepco power modules). The message
terminator is not part of the syntax; it is defined by the way your programming language indi-
cates the end of a line (such as a “newline” or “end-of-line” character). The message unit is a
keyword consisting of a single command or query word followed by a message terminator (e.g.,
CURR?<newline> or TRIG<end-of-line>). The message unit may include a data parameter after
the keyword separated by a space; the parameter is usually numeric (e.g., CURR 5<newline>),
but may also be a string (e.g., OUTP ON<newline>). Figure 4-2 illustrates the message struc-
ture, showing how message units are combined. The following subparagraphs explain each
component of the message structure.

NOTE: An alternative to using the message structure for multiple messages defined in the fol-
lowing paragraphs is to send each command as a separate line. In this case each com-
mand must use the full syntax shown in Appendix B.

4.4.4.1 KEYWORD

Keywords are instructions recognized by a decoder within the BIT Card, referred to as a
“parser.” Each keyword describes a command function; all keywords used by the BIT Card are
listed in Figure 4-1.

Each keyword has a long form and a short form. For the long form the word is spelled out com-
pletely (e.g. STATUS, OUTPUT, VOLTAGE, and TRIGGER are long form keywords). For the
short form only the first three or four letters of the long form are used (e.g., STAT, VOLT, OUTP,
and TRIG). The rules governing short form keywords are presented in Table 4-5.

INITiate
[:IMMediate]
:CONTinuous

MEASure
:CURRent?
:VOLTage?

[SOURce:]
VOLTage

[:LEVel]
[:IMMediate]
:TRIGgered

CURRent
 [:LEVel]

[:IMMediate]
:TRIGgered

FUNCtion
:MODE

ROOT : (colon)

STATus
:OPERation

:CONDition?
:ENABle
[:EVENt]?

:PRESet
:QUEStionable

:CONDition?
:ENABle
[:EVENt]?

SYSTem
:ERRor?
:LANGuage
BIT 232 022800 4-3

TABLE 4-1. SCPI COMMAND INDEX

COMMAND PAGE COMMAND PAGE

*CLS A-1 [SOUR]:CURR? B-5

*ESE A-2 [SOUR]:CURR:TRIG B-6

*ESE? A-2 [SOUR]:CURR:TRIG? B-6

*ESR? A-3 [SOUR]:VOLT B-7

*IDN? A-3 [SOUR]:VOLT? B-7

*OPC A-4 [SOUR]:VOLT:TRIG B-8

OPC? A-4 [SOUR]:VOLT:TRIG? B-8

*RST A-5 [SOUR]:FUNC:MODE B-9

*SRE A-6 STAT:OPER:COND? B-9

*SRE? A-6 STAT:OPER:ENAB B-10

*STB? A-7 STAT:OPER:ENAB? B-10

*TRG A-7 STAT:OPER? B-11

*TST A-8 STAT:PRES B-11

*WAI A-8 STAT:QUES? B-12

INIT[:IMM] B-1 STAT:QUES:COND? B-12

INIT:CONT B-1 STAT:QUES:ENAB B-13

INIT:CONT? B-2 STAT:QUES:ENAB? B-13

MEAS:CURR? B-3 SYST:ERR? B-14

MEAS:VOLT? B-3 SYST:LANG B-14

[SOUR]:CURR B-4

TABLE 4-2. RULES GOVERNING SHORTFORM KEYWORDS

IF NUMBER OF LETTERS IN
LONGFORM KEYWORD IS:

AND FOURTH LETTER
IS A VOWEL?

THEN SHORT FORM
CONSISTS OF: EXAMPLES

4 OR FEWER (DOES NOT MATTER) ALL LONG FORM LETTERS MODE

5 OR MORE

NO THE FIRST FOUR
LONG FORM LETTERS MEASure, OUTPut, EVENt

YES THE FIRST THREE
LONG FORM LETTERS

LEVel, IMMediate, ERRor
4-4 BIT 232 022800

FIGURE 4-2. MESSAGE STRUCTURE

You must use the rules above when using keywords. Using an arbitrary short form such as
ENABL for ENAB (ENABLE) or IMME for IMM (IMMEDIATE) will result in an error. Regardless
of which form chosen, you must include all the letters required by that form.

To identify the short form and long form in this manual, keywords are written in upper case let-
ters to represent the short form, followed by lower case letters indicating the long form (e.g.,
IMMediate, EVENt, and OUTPut). The parser, however, is not sensitive to case (e.g., outp,
OutP, OUTPUt, ouTPut, or OUTp are all valid).

4.4.4.2 KEYWORD SEPARATOR

If a command has two or more keywords, adjacent keywords must be separated by a colon (:)
which acts as the keyword separator (e.g., CURR:LEV:TRIG). The colon can also act as a root
specifier (paragraph 4.4.4.7).

4.4.4.3 QUERY INDICATOR

The question mark (?) following a keyword is a query indicator. This changes the command into
a query. If there is more than one keyword in the command, the query indicator follows the last
keyword. (e.g., VOLT? and MEAS:CURR?).

CURR:LEV 3.5;:OUTP ON;:CURR?<NL>

MESSAGE TERMINATOR

KEYWORD

QUERY INDICATOR

ROOT SPECIFIER

MESSAGE UNIT SEPARATOR

DATA

KEYWORD

KEYWORD

KEYWORD SEPARATOR

KEYWORD

MESSAGE UNIT SEPARATOR

DATA

MESSAGE UNIT

DATA SEPARATOR

DATA SEPARATOR

ROOT SPECIFIER
BIT 232 022800 4-5

4.4.4.4 DATA

Some commands require data to accompany the keyword either in the form of a numeric value
or character string. Data always follows the last keyword of a command or query (e.g.,
VOLT:LEV:TRIG 14 or SOUR:VOLT? MAX

4.4.4.5 DATA SEPARATOR

Data must be separated from the last keyword by a space (e.g., VOLT:LEV:TRIG 14 or
SOUR:VOLT? MAX

4.4.4.6 MESSAGE UNIT SEPARATOR

When two or more message units are combined in a program message, they must be separated
by a semicolon (;) (e.g., VOLT 15;MEAS:VOLT? and CURR 12; CURR:TRIG 12.5).

4.4.4.7 ROOT SPECIFIER

The root specifier is a colon (:) that precedes the first keyword of a program message. This
places the parser at the root (top left, Figure 4-3) of the command tree. Note the difference
between using the colon as a keyword separator and a root specifier in the following examples:

VOLT:LEV:IMM 16 Both colons are keyword separators.

:CURR:LEV:IMM 4 The first colon is the root specifier, the other two are keyword separators.

VOLT:LEV 6;:CURR:LEV 15 The second colon is the root specifier, the first and third are key-
word separators

:INIT ON;:TRIG;:MEAS:CURR?;VOLT? The first three colons are root specifiers.

4.4.4.8 MESSAGE TERMINATOR

The message terminator defines the end of a message. Three message terminators are permit-
ted:

• new line (<NL>), ASCII 10 (decimal) or 0A (hex)
• (<CR>), ASCII 13 (decimal) or 0D (hex)
• both of the above (<CR> <NL>)

NOTE: Kepco power modules require a message terminator at the end of each program mes-
sage. The examples shown in this manual assume a message terminator will be added
at the end of each message. Where a message terminator is shown it is represented
as <NL> regardless of the actual terminator character.

4.4.5 UNDERSTANDING THE COMMAND STRUCTURE

Understanding the command structure requires an understanding of the subsystem command
tree illustrated in Figure 4-3. The “root” is located at the top left corner of the diagram. The
parser goes to the root if:

• a message terminator is recognized by the parser
• a root specifier is recognized by the parser
4-6 BIT 232 022800

Optional keywords are enclosed in brackets [] for identification; optional keywords can be omit-
ted and the power supply will respond as if they were included in the message. The root level
keyword [SOURce] is an optional keyword. Starting at the root, there are various branches or
paths corresponding to the subsystems. The root keywords for the BIT Card are :INITiate,
:MEASure, :OUTPut, [:SOURce], :STATus, and :SYSTem. Because the [SOURce] keyword is
optional, the parser moves the path to the next level, so that VOLTage, CURRent, and FUNC-
tion commands are at the root level.

Each time the parser encounters a keyword separator, the parser moves to the next indented
level of the tree diagram. As an example, the STATus branch is a root level branch that has
three sub-branches: OPERation, PRESet, and QUEStionable. The following illustrates how
SCPI code is interpreted by the parser:

STAT:PRES<NL>
The parser returns to the root due to the message terminator.

STAT:OPER?;PRES<NL>
The parser moves one level in from STAT. The next command is expected at the level defined
by the colon in front of OPER?. Thus you can combine the following message units
STAT:OPER? and STAT:PRES;

STAT:OPER:COND?;ENAB 16<NL>
After the OPER:COND? message unit, the parser moves in one level from OPER, allowing the
abbreviated notation for STAT:OPER:ENAB.

4.4.6 PROGRAM MESSAGE SYNTAX SUMMARY

• Common commands begin with an asterisk (*).

• Queries end with a question mark (?).

• Program messages consist of a root keyword and, in some cases, one or more message
units separated by a colon (:) followed by a message terminator. Several message units
of a program message may be separated by a semicolon (;) without repeating the root
keyword.

• If a program message has more than one message unit, then a colon (:) must precede
the next keyword in order to set the parser back to the root (otherwise the next keyword
will be taken as a subunit of the previous message unit).

e.g., the command meas:volt?;curr? will read output voltage and output current
since both volt? and curr? are interpreted as subunits of the meas command.

• Several commands may be sent as one message; a line feed terminates the message.
Commands sent together are separated by a semicolon (;). The first command in a mes-
sage starts at the root, therefor a colon (:) at the beginning is not mandatory.

e.g., the command meas:volt?;:curr? will read output voltage and programmed cur-
rent since the colon preceding curr? indicates that curr? is not part of the meas com-
mand and starts at the root.

• UPPER case letters in mnemonics are mandatory (short form). Lower case letters may
either be omitted, or must be specified completely (long form)
e.g., INSTrument (long form) has the same effect as INST (short form).
BIT 232 022800 4-7

• Commands/queries may be given in upper/lower case (long form)
e.g., SoUrCe is allowed.

• Text shown between brackets [] is optional.
e.g., :[SOUR]VOLT:[LEV] TRIG has the same effect as :VOLT TRIG

4.5 CIIL PROGRAMMING

The CIIL command language is used on early models of Kepco power supplies and controllers.
The command functions are included here for compatibility with other equipment programmed
with CIIL commands. The CIIL command set for the BIT Card is defined and explained in
Appendix C.

4.6 PROGRAMMING EXAMPLES

Appendices D through G provide sample programs which can be altered and adapted by the
user for specific applications, or used exactly as shown. All programs shown use SCPI com-
mands; these can be adapted to use CIIL commands by changing the command strings to CIIL.

Appendix D is a C language program used with an IBM compatible computer running a terminal
emulation program.

Appendix E is a C language program which automatically programs a series of commands

Appendix F is comprised of C language function prototypes used as building blocks for the pro-
grams in Appendices D and E. These function prototypes can also aid the user in creating new
programs for unique applications.

Appendix G is a QuickBasic language program which executes some commands and also
implements terminal emulation .
4-8 BIT 232 022800

APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS

A.1 INTRODUCTION

This appendix defines the SCPI common commands and queries used with the BIT 232/BIT
232-F Interface Card. Common commands and queries are preceded by an asterisk (*) and are
defined and explained in Figures A-1 through A-14, arranged in alphabetical order. Table A-1
provides a quick reference of all SCPI common commands and queries used in the BIT Card.

FIGURE A-1. *CLS — CLEAR STATUS COMMAND

TABLE A-1. SCPI COMMON COMMAND/QUERY INDEX

COMMAND PAGE COMMAND PAGE

*CLS A-1 *RST A-5

*ESE A-2 *SRE A-6

*ESE? A-2 *SRE? A-6

*ESR? A-3 *STB? A-7

*IDN? A-3 *TRG A-7

*OPC A-4 *TST A-8

*OPC? A-4 *WAI A-8

Syntax: *CLS

Function: Clear status data

Response: Not Applicable

Description: Forces power supply to “operation complete idle” and “operation complete query” state. Clears all
Event Registers summarized in Status Byte Register.

Clears Standard Event Status, Operation Status Event, Questionable Status Event, and Status Byte
Registers. Clears the error queue.

Example: *CLS Power supply clears status data.

*CLS
BIT 232 022800 A-1

FIGURE A-2. *ESE — STANDARD EVENT STATUS ENABLE COMMAND

FIGURE A-3. *ESE? — STANDARD EVENT STATUS ENABLE QUERY

Syntax: *ESE <integer>
<integer> = positive whole number: 0 to 255 per STANDARD EVENT STATUS ENABLE REGISTER BITS
table below.

Function: Sets ESE (standard Event Status Enable) register bits to enable the Standard events to be summa-
rized in the Status Byte register (1 = set = enable function, 0 = reset = disable function).

Response: Not applicable

Description: Contents of Standard Event Status Enable register (*ESE) determine which bits of Standard Event
Status register (*ESR) are enabled, allowing them to be summarized in the Status Byte register
(*STB). All of the enabled events of the Standard Event Status Enable Register are logically ORed
to cause ESB (bit 5) of the Status Byte Register to be set.

Example: *ESE 49 Power supply enables bits 0, 4 and 5) allowing command error, execution error
and operation complete conditions to be recorded in the Event Status Register.

STANDARD EVENT STATUS ENABLE REGISTER BITS

CONDITION NU NU CME EXE DDE QUE NU OPC

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

NU (Not Used)
CME Command Error
EXE Execution Error
DDE Device Dependent Error
QUE Query Error
OPC Operation Complete

*ESE

Syntax: *ESE?

Response: <integer> value per STANDARD EVENT STATUS ENABLE REGISTER BITS table below.

Function: Returns the status of the Standard Event Status Enable Register

Description: Contents of Standard Event Status Enable register (*ESE) determine which bits of Standard Event
Status register (*ESR) are enabled, allowing them to be summarized in the Status Byte register
(*STB). All of the enabled events of the Standard Event Status Enable Register are logically ORed to
cause ESB (bit 5) of the Status Byte Register to be set (1 = set = enable function, 0 = reset = disable
function).

Example: *ESE 49 Power Supply enables bits 0, 4 and 5
*ESE? Controller reads <value> 49, verifying that bits 0, 4 and 5 have been enabled.

STANDARD EVENT STATUS ENABLE REGISTER BITS

CONDITION NU NU CME EXE DDE QUE NU OPC

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*ESE?

NU (Not Used)
CME Command Error
EXE Execution Error
DDE Device Dependent Error
QUE Query Error
OPC Operation Complete
A-2 BIT 232 022800

FIGURE A-4. *ESR? — EVENT STATUS REGISTER QUERY

FIGURE A-5. *IDN? — IDENTIFICATION QUERY

Syntax: *ESR?

Response: <integer> value per STANDARD EVENT STATUS REGISTER BITS table below.

Function: This query reads the Standard Event Status Event register, clearing the register at the same time.

Description: The Standard Event Status Event register bit configuration is shown below (1 = set = enable function,
0 = reset = disable function):

Example: *ESE 49 Power supply enables bits 0, 4 and 5
*ESR? Controller reads <value> 48 (bits 4 and 5 set), indicating Command Error and

 Execution error have occurred since the last time the register was read.

STANDARD EVENT STATUS REGISTER BITS

CONDITION NU NU CME EXE DDE QUE NU OPC

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*ESR?

NU (Not Used)
CME Command Error
EXE Execution Error
DDE Device Dependent Error
QUE Query Error
OPC Operation Complete

*IDN?

Syntax: *IDN?

Function: Identifies the instrument.

Response: Character string.

Description: Power Supply responds with model and version.

Example: *IDN? Controller reads character string: “KEPCO BOP BIT 232 REV n”
where n = applicable revision number.
BIT 232 022800 A-3

FIGURE A-6. *OPC — OPERATION COMPLETE COMMAND

FIGURE A-7. *OPC? — OPERATION COMPLETE QUERY

Syntax: *OPC

Function: Causes power supply to set status bit 0 (Operation Complete) when pending operations are complete

Description: This command sets Standard Event Status Register bit 0 to “1” when all previous commands have
been executed and changes in output level have been completed. This command does not prevent
processing of subsequent commands, but bit 0 will not be set until all pending operations are com-
pleted. (1 = set = enable function, 0 = reset = disable function)

Example: Controller sends command(s), then sends *OPC
If controller then sends *ESR?, the power supply responds with either a “0” (if the power supply is
busy executing the programmed commands), or a “1” (if the previously programmed commands are
complete).

STANDARD EVENT STATUS REGISTER BITS

CONDITION NU NU CME EXE DDE QUE NU OPC

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*OPC

NU (Not Used)
CME Command Error
EXE Execution Error
DDE Device Dependent Error
QUE Query Error
OPC Operation Complete

Syntax: *OPC?

Function: Indicates when pending operations have been completed.

Response: <1>

Description: When all pending operations are complete (all previous commands have been executed and changes
in output level have been completed) a “1” is placed in the Output Queue. Subsequent commands are
inhibited until the pending operations are completed. *OPC? is intended to be used at the end of a
command line so that the application program can monitor the bus for data until it receives the “1” from
the power supply Output Queue.

Example: Controller sends command(s), then sends *OPC?
Controller waits until power supply responds with “1” on bus, indicating previous commands are com-
plete, then proceeds to execute subsequent commands.

*OPC?
A-4 BIT 232 022800

FIGURE A-8. *RST — RESET COMMAND

Syntax: *RST

Function: Resets power supply as defined below:

Response: None

Description: Establishes the following power supply parameters:

CURR[:LEV][:IMM] 0
VOLT[:LEV][:IMM] 0
FUNC:MODE VOLT

Example: *RST Power supply responds by establishing default states defined above.

*RST
BIT 232 022800 A-5

FIGURE A-9. *SRE — SERVICE REQUEST ENABLE COMMAND

FIGURE A-10. *SRE? — SERVICE REQUEST ENABLE QUERY

Syntax: *SRE<integer>
<integer> = value from 0 - 255 per SERVICE REQUEST ENABLE REGISTER table below, except bit 6
cannot be programmed.

Function: Programs the Service Enable Register to determine which events of the Status Byte Register will
cause the power supply to generate a service request

Description: When a Service Request Enable Register bit is set (“1”), the corresponding Status Byte Register bit
(set to “1”) causes the RQS and MSS bits to be set (1 = set = enable function, 0 = reset = disable func-
tion). All enabled Service Request Enable Register bits are logically ORed to set bit 6 (MSS/RQS) of
the Status byte register. Bit 6 is also set by the power supply to request service (RQS). (See also Fig-
ure 3-12, *STB?)

Example: *SRE112 Power supply will set bit 6 (MSS/RQS) if any event status register bit is set (ESB = 1),
or any message is available (MAV = 1)

SERVICE REQUEST ENABLE REGISTER BITS

CONDITION NU MSS
RQS ESB MAV NU

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*SRE

MSS Master Status Summary
RQS Request for Service
ESB Event Status Byte summary
MAV Message available
NU (Not Used)

Syntax: *SRE?

Response: <integer> = value from 0 - 255 per SERVICE REQUEST ENABLE REGISTER table below,.

Function: Reads the Service Enable Register to determine which events of the Status Byte Register are pro-
grammed to cause the power supply to generate a a service request (1 = set = function enabled, 0 =
reset = function disables).

Description: See *SRE command (Figure 3-11) and *STB? command (Figure 3-13).

Example: *SRE? Power supply responds with 32 to indicate that the power supply will request service
if the Event Status Byte summary bit is set.

SERVICE REQUEST ENABLE REGISTER BITS

CONDITION NU MSS
RQS

ESB MAV NU

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*SRE?

MSS Master Status Summary
RQS Request for Service
ESB Event Status Byte summary
MAV Message available
NU (Not Used)
A-6 BIT 232 022800

FIGURE A-11. *STB? — STATUS BYTE REGISTER QUERY

FIGURE A-12. *TRG — TRIGGER COMMAND

Syntax: *STB?

Response: <integer> value from 0 to 255 per table below

Function: Read Status Byte Register without clearing it

Description: This Query reads the Status Byte Register (bit 6 = MSS) without clearing it (1 = set = function enabled,
0 = reset = function disabled). The register is cleared only when subsequent action clears all set bits.
MSS is set when the power supply has one ore more reasons for requesting service. (A serial poll also
reads the Status Byte Register, except that bit 6 = RQS, not MSS; ands RQS will be reset.)

Example: *STB? Power supply responds with 96 (64 + 32) to indicate MSS and the Event Status
Byte summary bit have been set.

STATUS BYTE REGISTER BITS

CONDITION N#HI MSS
RQS

ESB MAV NODE NUMBERS (ADDRESS)

BIT 7 6 5 4 3 2 1 0

VALUE 128 64 32 16 8 4 2 1

*STB?

N#HI Node number high
MSS Master Status Summary
RQS Request for Service
ESB Event Status Byte summary
MAV Message available

Syntax: *TRG

Function: Triggers the power supply to be commanded to preprogrammed value of output current and voltage.

Description: This command causes the power supply to be commanded to the output voltage and current levels
specified by VOLT:TRIG and CURR:TRIG commands, respectively (see Figures B-13 and B-9).

Example 1: VOLT 25 Power supply voltage commanded to 25V.
VOLT:TRIG 15 Programs power supply voltage to 15V when *TRG received.
INIT Trigger event is initialized.
*TRG Power supply reverts to commanded output voltage of 15V.

*TRG
BIT 232 022800 A-7

FIGURE A-13. *TST? — SELF TEST QUERY

FIGURE A-14. *WAI — WAIT-TO-CONTINUE COMMAND

Syntax: *TST?

Response: 0 = pass test
1 = fail test

Function: Power Supply test

Description: This query causes the power supply to do a self-test and provide the controller with pass/fail results.

CAUTION: TO AVOID DAMAGE TO THE LOAD, DISCONNECT THE LOAD BEFORE ISSUING
THIS COMMAND. (DURING THE SELF-TEST, THE BOP IS PROGRAMMED TO FULL
SCALE POSITIVE AND FULL SCALE NEGATIVE OUTPUT.)

Example: *TST? Power supply executes self test and responds with 0 if test completed successfully,
with 1 if test failed.

*TST?

Syntax: *WAI

Function: Causes the power supply to wait until all previously issued commands and queries are complete
before executing subsequent commands or queries.

Description: This command can be used to guarantee sequential execution of commands and queries. When all
pending operations are complete (all previous commands have been executed, changes in output
level have been completed), the WAI command is completed and execution of subsequent commands
can continue.

Example: Controller sends Command 1 Power supply begins execution of command 1.
Controller sends *WAI Power supply waits for command 1 to be completed before

 executing command 2.
Controller sends Command 2 Command 2 executed after command 1 is completed.

*WAI
A-8 BIT 232 022800

APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS

B.1 INTRODUCTION

This appendix defines the SCPI subsystem commands and queries used with the BIT 232/BIT
232-F Interface Card. Subsystem commands are defined in Figures B-1 through B-26, arranged
in groups as they appear in the tree diagram, Figure 3-3. Table B-1 provides a quick reference of
all SCPI subsystem commands and queries used in the BIT Card.

FIGURE B-1. INITiate[:IMMediate] COMMAND

TABLE B-1. SCPI SUBSYSTEM COMMAND/QUERY INDEX

COMMAND PAGE COMMAND PAGE

INIT[:IMM] B-1 [SOUR]:FUNC:MODE B-9

INIT:CONT B-2 STAT:OPER:COND? B-9

INIT:CONT? B-2 STAT:OPER:ENAB B-10

MEAS:CURR? B-3 STAT:OPER:ENAB? B-10

MEAS:VOLT? B-3 STAT:OPER[EVENT]? B-11

[SOUR]:CURR B-5 STAT:PRES B-11

[SOUR]:CURR? B-5 STAT:QUES[EVENT]? B-12

[SOUR]:CURR:TRIG B-6 STAT:QUES:COND? B-12

[SOUR]:CURR:TRIG? B-6 STAT:QUES:ENAB B-13

[SOUR]:VOLT B-7 STAT:QUES:ENAB? B-13

[SOUR]:VOLT? B-7 SYST:ERR? B-14

[SOUR]:VOLT:TRIG B-8 SYST:LANG B-14

[SOUR]:VOLT:TRIG? B-8

Syntax: Short Form: INIT
Long Form: :INITiate[:IMMediate]

Function: Enables a single trigger.

Description: This command enables a single trigger. A *TRG command completes the sequence. Upon receipt of
the *TRG command, the power supply will return to the commanded values of voltage and current
established by the VOLT:TRIG and CURR:TRIG commands. After a *TRG command has been
received, subsequent *TRG commands have no effect unless preceded by INIT or INIT:CONT ON.

Example: VOLT 21; CURR 5 Power supply output commanded to go to 21V, 5A
VOLT:TRIG 15;CURR:TRIG 3 Power supply output programmed to return to 15V, 3A upon

 receipt of *TRG trigger.
INIT;*TRG Upon receipt of *TRG command power supply is

 commanded to 15V, 3A.

NOTE: Commanded voltage and current parameters will either be output or limit parameters,
depending on whether output is enabled, load and mode

INIT[:IMM]
BIT 232 022800 B-1

FIGURE B-2. INITiate:CONTinuous COMMAND

FIGURE B-3. INITiate:CONTinuous QUERY

Syntax: Short Form: INIT:CONT <value>
Long Form: :INITiate:CONTinuous <value>

Function: INIT:CONT ON Enables continuous triggers.
INIT:CONT OFFDisables continuous triggers.

Description: This command enables/disables triggers. *TRG commands complete the sequence. Once INIT:CONT
ON enables continuous triggers, subsequent *TRG commands return the power supply output to the
commanded values of voltage and current established by the VOLT:TRIG and CURR:TRIG com-
mands until INIT:CONT OFF is received.

Example: VOLT 21; CURR 5 Power supply output commanded to go to 21V, 5A
INIT:CONT ON Continuous triggers enabled.
VOLT:TRIG 15;CURR:TRIG 3 Power supply output programmed to return to 15V, 3A upon

 receipt of trigger.
*TRG Upon receipt of *TRG command power supply output returns

 to 15V, 3A.
VOLT 17; CURR 2 Power supply output commanded to go to 17V, 2A
*TRG Upon receipt of *TRG command power supply output returns

 to 15V, 3A.
INIT:CONT OFF Triggers disabled.

INIT:CONT

Syntax: Short Form: INIT:CONT?
Long Form: :INITiate:CONTinuous?

Function: Determines whether continuous triggers are enabled or disabled.

Response: “1” = continuous triggers are enabled (INIT:CONT ON)
 “0” = continuous triggers disabled (INIT:CONT OFF)

Description: Power supply returns value of INIT:CONT flag to controller

Example: VOLT 21; CURR 5 Power supply output commanded to go to 21V, 5A
INIT:CONT ON Continuous triggers enabled.
VOLT:TRIG 15;CURR:TRIG 3 Power supply programmed to return to 15V, 3A upon

 receipt of *TRG trigger.
*TRG Power supply returns to 15V, 3A.
INIT:CONT? Controller reads “1” to indicate that continuous triggers are

 enabled.

INIT:CONT?
B-2 BIT 232 022800

FIGURE B-4. MEASure:CURRent? and MEASure:VOLTage? QUERIES

Syntax: Short Form: MEAS:CURR?
: MEAS:VOLT?
Long Form: MEASure:CURRent[:DC]?

MEASure:VOLTage[:DC]?

Function: Measures actual current or voltage

Description: This query returns the actual value of output current or voltage (measured at the sense terminals) as
determined by the commanded value of voltage and current and load conditions.

Example: VOLT 21; CURR 5 Power supply output commanded to go to 21V, 5A
MEAS:CURR? Controller reads actual value of output current, e.g., 4.83A.
MEAS:VOLT? Controller reads actual value of output voltage, e.g., 20.9.

MEAS:CURR?
MEAS:VOLT?
BIT 232 022800 B-3

FIGURE B-5. CURRent COMMAND

FIGURE B-6. CURRent QUERY

Syntax: Short Form: CURR <value>
Long Form: [SOURce]:CURRent[:LEVel][:IMMediate] <value>

Function: Sets commanded current or current limit to specified level.

Description: This command programs output current (Current mode) or current limit (Voltage mode) to a specific
value. Actual output current will depend on load conditions.

Example: VOLT 21; CURR 5 Power supply output commanded to go to 21V, 5A

CURR

Syntax: Short Form: CURR?
Long Form: [SOURce]:CURRent?

Function: CURR? Returns programmed current value.
CURR? MAX Returns maximum current allowed for power supply.
CURR? MIN Returns minimum current allowed for power supply (always 0).

Description: The CURR? query returns the programmed current (Current mode) or current limit (Voltage mode) of
the power supply. Actual output current will depend on load conditions. The CURR?MAX query returns
the maximum current allowed for a particular model.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
CURR? Controller reads 1.1, indicating programmed current value = 1.1A
CURR? MAX Controller reads 3.6 (assuming maximum allowable current for power

 supply being addressed is 3.6 A).

CURR?
B-4 BIT 232 022800

FIGURE B-7. CURRent:TRIGgered COMMAND

FIGURE B-8. CURRent:TRIGgered QUERY

Syntax: Short Form: CURR:TRIG <value>
Long Form: [SOURce]:CURRent:TRIGgered <value>

Function: Programs current value to be implemented by *TRG command. Actual output current will depend on
load conditions.

Description: This command can be used to reset many power supplies to preselected parameters by issuing a sin-
gle *TRG command.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
CURR:TRIG 2.3 Power supply current programmed to 2.3A upon receipt of *TRG
CURR? Controller reads 1.1, indicating programmed current value = 1.1A
*TRG Power supply commanded to current value established by CURR:TRIG

 command (2.3) and voltage value established by VOLT:TRIG
CURR? Controller reads 2.3, indicating programmed current value = 2.3A

CURR:TRIG

Syntax: Short Form: CURR:TRIG?
Long Form: [SOURce]:CURRent:TRIGgered?

Function: Returns value to controller which represents current value to be programmed by *TRG command.

Description: This command returns the current value established by CURR:TRIG command.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
CURR:TRIG 2.3 Power supply current programmed to 2.3 upon receipt of *TRG
CURR? Controller reads 1.1, indicating programmed current value = 1.1A
CURR:TRIG? Controller reads 2.3 (current value established by CURR:TRIG

 command

CURR:TRIG?
BIT 232 022800 B-5

FIGURE B-9. VOLTage COMMAND

FIGURE B-10. VOLTage QUERY

Syntax: Short Form: VOLT <value>
Long Form: [SOURce]:VOLTage[:LEVel][:IMMediate] <value>

Function: Sets commanded voltage or voltage limit to specified level.

Description: This command programs commanded output voltage (Voltage mode) or voltage limit (Current mode)
to a specific value. Actual output voltage will depend on load conditions.

Example: VOLT 21; CURR 5 Power supply commanded to go to 21V, 5A

VOLT

Syntax: Short Form: VOLT?
Long Form: [SOURce]:VOLTage?

Function: VOLT? Returns programmed voltage value.
VOLT? MAX Returns maximum voltage allowed for power supply.
VOLT? MIN Returns minimum voltage allowed for power supply (always 0).

Description: The VOLT? query returns the programmed voltage (Voltage mode) or voltage limit (Current mode) of
the power supply to the controller. Actual output voltage will depend on load conditions. The
VOLT?MAX query returns the maximum voltage allowed for a particular model.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
VOLT? Controller reads 21, indicating programmed voltage value = 21V
VOLT? MAX Controller reads 100 (assuming maximum allowable voltage for power

 supply being addressed is 100V).

VOLT?
B-6 BIT 232 022800

FIGURE B-11. VOLTage:TRIGgered COMMAND

FIGURE B-12. VOLTage:TRIGgered QUERY

Syntax: Short Form: VOLT:TRIG <value>
Long Form: [SOURce]:VOLTage:TRIGgered <value>

Function: Programs voltage value to be implemented by *TRG command. Actual output voltage will depend on
load conditions.

Description: This command can be used to reset many power supplies to preselected parameters by issuing a sin-
gle *TRG command.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
VOLT:TRIG 29.3 Power supply current programmed to 29.3 upon receipt of *TRG
VOLT? Controller reads 21, indicating programmed current value = 21V
*TRG Power supply commanded to voltage value established by VOLT:TRIG

 command (29.3) and current value established by CURR:TRIG
VOLT? Controller reads 29.3, indicating programmed current value = 2.3A

VOLT:TRIG

Syntax: Short Form: VOLT:TRIG?
Long Form: [SOURce]:VOLTage:TRIGgered?

Function: Returns value to controller representing voltage value to be programmed by *TRG command.

Description: This command returns the voltage value established by VOLT:TRIG command.

Example: VOLT 21; CURR 1.1 Power supply commanded to go to 21V, 1.1A
VOLT:TRIG 29.3 Power supply voltage programmed to 29.3 upon receipt of *TRG
VOLT? Controller reads 21, indicating programmed voltage value = 21V
VOLT:TRIG? Controller reads 29.3 (voltage value established by VOLT:TRIG

command

VOLT:TRIG?
BIT 232 022800 B-7

FIGURE B-13. FUNCtion:MODE COMMAND

FIGURE B-14. STATus:OPERation:CONDition QUERY

Syntax: Short Form: FUNC:MODE
Long Form: [SOURce]:FUNCtion:MODE

Function: FUNC:MODE VOLT Commands power supply to Voltage mode
FUNC:MODE CURR Commands power supply to Current mode

Description: Commanded mode establishes parameters (voltage or current) monitored for error conditions. Actual
mode depends upon load conditions. When commanded to Voltage mode, if load conditions cause the
power supply to try to exceed the current limit, the unit will automatically switch to Current mode and
flag an error condition. When commanded to Current mode, if load conditions cause the power supply
to try to exceed the voltage limit, the unit will automatically switch to Voltage mode and flag an error
condition.

Example: FUNC:MODE VOLT Power supply commanded to Voltage mode.
VOLT 21; CURR 1.1 Power supply commanded to output 21V, current limit set to 1.1A.
FUNC:MODE CURR Power supply commanded to Current mode.
CURR 1.1; VOLT 21 Power supply commanded to output 1.1A, voltage limit set to 21V.

FUNC:MODE

Syntax: Short Form: STAT:OPER:COND?
Long Form: STATus:OPERation:CONDition?

Function: Returns the value of the Operation Condition Register to controller (1 = set = function enabled, 0 =
reset = function disabled).

Description: The Operation Condition Register contains unlatched real-time information about the operating condi-
tions of the power supply.

Example: STAT:OPER:COND? Power supply returns <value> 1536 (1024 + 512) to indicate that power
supply is operating in Current mode with relay closed.

OPERATION CONDITION REGISTER BITS

CONDITION
CURRENT

MODE
RELAY

CLOSED
VOLTAGE

MODE NOT USED

BIT 10 9 8 7 6 5 4 3 2 1 0

VALUE 1024 512 256 128 64 32 16 8 4 2 1

STAT:OPER:COND?
B-8 BIT 232 022800

FIGURE B-15. STATus:OPEReration:ENABle COMMAND

FIGURE B-16. STATus:OPEReration:ENABle QUERY

Syntax: Short Form: STAT:OPER:ENAB <value>
Long Form: STATus:OPERation:ENABle <value>

Function: Programs Operational Condition Enable Register)

Description: The Operation Condition Enable Register determines which conditions are allowed to set the Opera-
tion Condition Register. The value sent by the controller sets the corresponding bits of the Operation
Condition Enable Register in the power supply (1 = set = function enabled, 0 = reset = function dis-
abled).

Example: STAT:OPER:ENAB 1280 Bits 8 and 10 of Operation Condition Enable Register are set, allowing
the Operation Condition Register to monitor Voltage and Current mode
conditions, but not report the status of the relay.

OPERATION CONDITION ENABLE REGISTER BITS

CONDITION CURRENT
MODE

RELAY
CLOSED

VOLTAGE
MODE

NOT USED

BIT 10 9 8 7 6 5 4 3 2 1 0

VALUE 1024 512 256 128 64 32 16 8 4 2 1

STAT:OPER:ENAB

Syntax: Short Form: STAT:OPER:ENAB?
Long Form: STATus:OPERation:ENABle?

Function: Reads Operational Condition Enable Register)

Description: Power supply returns value of Operation Condition Enable Register to controller, indicating which con-
ditions are being monitored. (1 = set = function enabled, 0 = reset = function disabled)

Example: STAT:OPER:ENAB? Controller reads <value> 1792 (1024 + 512 + 256) to indicate that bits
8, 9, and 10 of the Operation Condition Register are set, allowing
Voltage mode, relay closed, and Current mode conditions to be
monitored.

OPERATION CONDITION ENABLE REGISTER BITS

CONDITION CURRENT
MODE

RELAY
CLOSED

VOLTAGE
MODE NOT USED

BIT 10 9 8 7 6 5 4 3 2 1 0

VALUE 1024 512 256 128 64 32 16 8 4 2 1

STAT:OPER:ENAB?
BIT 232 022800 B-9

FIGURE B-17. STATus:OPERation QUERY

FIGURE B-18. STATus:PRESet COMMAND

Syntax: Short Form: STAT:OPER[EVEN]?
Long Form: STATus:OPERation[EVENT]?

Function: Indicates changes in conditions monitored by Operational Event Register)

Description: Power supply returns value to controller indicating conditions of Operation Event Register which have
changed since the last STAT:OPER? query. This value is cleared once reported...

Example: STAT:OPER? Controller reads <value> 768 (512 + 256) to indicate that bits 8 and 9
are set, indicating that the power supply has changed to Voltage mode
and the relay has closed since the last STAT:OPER? query.

OPERATION EVENT REGISTER BITS

CONDITION CURRENT
MODE

RELAY
CLOSED

VOLTAGE
MODE NOT USED

BIT 10 9 8 7 6 5 4 3 2 1 0

VALUE 1024 512 256 128 64 32 16 8 4 2 1

STAT:OPER?

Syntax: Short Form: STAT:PRES
Long Form: STATus:PRESet

Function: Disables reporting of all status events.

Description: This command sets all bits of the Operation Condition and Questionable Condition Registers to 0, pre-
venting all status events from being reported...

Example: STAT:PRES Operation Condition and Questionable Condition registers can no
longer be set.

STAT:PRES
B-10 BIT 232 022800

FIGURE B-19. STATus:QUEStionable? QUERY

FIGURE B-20. STATus:QUEStionable:CONDition? QUERY

Syntax: Short Form: STAT:QUES[EVEN]?
Long Form: STATus:QUEStionable[EVENT]?

Function: Indicates changes in conditions monitored by Questionable Event Register)

Description: Power supply returns value to controller indicating conditions of Questionable Event Register which
have changed since the last STAT:OPER? query. This value is cleared once reported.

Example: STAT:OPER? Controller reads <value> 1026 (1024 + 2) to indicate that bits 1 and 10
are set, indicating that the power supply has detected overload and
current error conditions since the last STAT:QUES? query.

QUESTIONABLE EVENT REGISTER BITS

CONDITION PL OL RE NU NU NU NU NU OT NU CE VE

BIT 11 10 9 8 7 6 5 4 3 2 1 0

VALUE 2048 1024 512 256 128 64 32 16 8 4 2 1

STAT:QUES?

PL POWER LOSS
OL OVERLOAD
RE RELAY ERROR
OT OVERTEMPERATURE
CE CURRENT ERROR
VE VOLTAGE ERROR
NU NOT USED

Syntax: Short Form: STAT:QUES:COND?
Long Form: STATus:QUEStionable:CONDition?

Function: Returns the value of the Questionable Condition Register to controller. (1 = set = function enabled, 0 =
reset = function disabled)

Description: The Questionable Condition Register contains unlatched real-time information about questionable
conditions of the power supply.

Example: STAT:QUES:COND? Power supply returns <value> 1545 (1024 + 512 + 8 + 1) to indicate
that overload, relay, overtemperature and voltage errors were detected.

QUESTIONABLE CONDITION REGISTER BITS

CONDITION PL OL RE NU NU NU NU NU OT NU CE VE

BIT 11 10 9 8 7 6 5 4 3 2 1 0

VALUE 2048 1024 512 256 128 64 32 16 8 4 2 1

STAT:QUES:COND?

PL POWER LOSS
OL OVERLOAD
RE RELAY ERROR
OT OVERTEMPERATURE
CE CURRENT ERROR
VE VOLTAGE ERROR
NU NOT USED
BIT 232 022800 B-11

FIGURE B-21. STATus:QUEStionable:ENABle COMMAND

FIGURE B-22. STATus:QUEStionable:ENABle? QUERY

Syntax: Short Form: STAT:QUES:ENAB <value>
Long Form: STATus:QUESionable:ENABle <value>

Function: Programs Questionable Condition Enable Register)

Description: The Questionable Condition Enable Register determines which conditions are allowed to set the
Questionable Condition Register. The value sent by the controller sets the corresponding bits of the
Questionable Condition Enable Register in the power supply (1 = set = function enabled, 0 = reset =
function disabled.

Example: STAT:QUES:ENAB 3595 Bits 0, 1, 3, 9, 10, and 11 of the Questionable Condition Enable
Register are set, causing the power supply to monitor voltage error,
current error, overtemperature, relay error, overload and power loss
conditions.

QUESTIONABLE CONDITION ENABLE REGISTER BITS

CONDITION PL OL RE NU NU NU NU NU OT NU CE VE

BIT 11 10 9 8 7 6 5 4 3 2 1 0

VALUE 2048 1024 512 256 128 64 32 16 8 4 2 1

STAT:QUES:ENAB

PL POWER LOSS
OL OVERLOAD
RE RELAY ERROR
OT OVERTEMPERATURE
CE CURRENT ERROR
VE VOLTAGE ERROR
NU NOT USED

Syntax: Short Form: STAT:QUES:ENAB?
Long Form: STATus:QUESionable:ENABle?

Function: Reads Questionable Condition Enable Register)

Description: Power supply returns value of Questionable Condition Enable Register to controller, indicating which
conditions are being monitored.

Example: STAT:QUES:ENAB? Controller reads <value> 3595 (2048 + 1024 + 512 + 8 + 2 + 1) to
indicate that voltage error, current error, overtemperature, relay error,
overload and power loss conditions are being monitored.

QUESTIONABLE CONDITION ENABLE REGISTER BITS

CONDITION PL OL RE NU NU NU NU NU OT NU CE VE

BIT 11 10 9 8 7 6 5 4 3 2 1 0

VALUE 2048 1024 512 256 128 64 32 16 8 4 2 1

STAT:QUES:ENAB?

PL POWER LOSS
OL OVERLOAD
RE RELAY ERROR
OT OVERTEMPERATURE
CE CURRENT ERROR
VE VOLTAGE ERROR
NU NOT USED
B-12 BIT 232 022800

FIGURE B-23. SYSTem:ERRor? QUERY

FIGURE B-24. SYSTem:LANGuage COMMAND

Syntax: Short Form: SYST:ERR?
Long Form: SYSTem:ERRor?

Function: Provides error messages to controller.

Description: Returns error number and character string containing error message. Error messages are defined as
follows:

Example: SYST:ERR? Controller reads: 0, “No error”

ERROR MESSAGES

ERROR MESSAGE EXPLANATION

 0 “No error” No error

-100 “Command error” Wrong syntax; command not understood.

-222 “Voltage out of range” Value Exceeds Power Supply Rating

-222 “Current out of range” Value exceeds power supply rating

-240 “Hardware error” Power supply did not respond to command

SYST:ERR?

Syntax: Short Form: SYST:LANG CIIL
Long Form: SYSTem:LANGuage

Function: Selects the CIIL language command set (See Appendix C.)

Description: This command allows the CIIL command language to be used to program the power supply. (CIIL is
included to provide compatibility with earlier Kepco equipment.) Once CIIL is selected, the CIIL com-
mand ‘GAL’ followed by the command ‘SCPI’ must be sent for the power supply to respond to SCPI
commands.

Example: SYST:LANG CIIL Power supply responds to CIIL command set.

SYST:LANG
BIT 232 022800 B-13/B-14

APPENDIX C - CIIL COMMAND DEFINITIONS

C.1 INTRODUCTION

This appendix defines the CIIL commands used with the BIT 232/BIT 232-F Interface Card.
Table C-1 provides a quick reference of all CIIL commands used in the BIT Card.

FIGURE C-1. FNC — FUNCTION COMMAND

TABLE C-1. CIIL SUBSYSTEM COMMAND/QUERY INDEX

COMMAND PAGE COMMAND PAGE

CNF C-4 RST C-4

FNC C-1 SET C-3

FTH C-2 SRN C-3

GAL C-6 SRX C-3

INX C-2 STA C-5

IST C-4

Syntax: Stimulus mode: FNC DCS :CH1 <SET Command>
Sensor mode: FNC DCS <VOLT or CURR command> :CH1

Function: This operator is used with either the SET command to program a power supply's output (stimulus
mode), or with the VOLT and CURR commands to read its output settings (sensor mode).

Description: The first operand contains the three (3) letter mnemonic pertaining to the device on the control bus, in
this case DCS (Direct Current Source). If a reading is being set up, the modifier VOLT or CURR fol-
lows. The next operand is used to select the specific channel of the device being programmed or read
from.

Example: FNC DCS :CH1 SET VOLT 15 Power supply commanded to 15V
FNC DCS :CH1 SET CURR 3 Power supply commanded to 3A
FNC DCS VOLT :CH1 Power supply returns value which represents actual output

voltage
FNC DCS CURR :CH1 Power supply returns value which represents actual output

current

NOTE: Actual output voltage and current depends on load conditions

FNC
BIT 232 022800 C-1

FIGURE C-2. INX — INITIATE OP CODE COMMAND

FIGURE C-3. FTH — FETCH COMMAND

Syntax: INX VOLT (initiate voltage reading)
INX CURR (initiate current reading)

Function: Commences a data acquisition process in accordance with the preceding FNC command.

Description: The response to the INX command is a dynamic time-out value, unless a catastrophic error condition
exists, in which case an error message will be returned. If the time-out value returned is not zero, this
indicates the power supply’s output voltage or current has not yet settled. A time delay should be
observed before proceeding with the FTH command, or the command may be repeated until a zero
value is returned, but the preceding FTH command must also be repeated.

Example: INX VOLT Power supply initiates voltage reading)
FTH VOLT Power supply sends voltage reading to controller)

INX

Syntax: FTH VOLT (fetch voltage reading)
FTH CURR (fetch current reading)

Function: Commands the previously designated power supply to return the requested data reading.

Description: This command must immediately follow an INX command. The value returned is the value of the out-
put voltage or current, whichever was requested, unless a catastrophic error condition exists, in which
case an error message will be returned. The value observed will be in scientific notation.

Example: INX VOLT Power supply initiates voltage reading)
FTH VOLT Power supply sends voltage reading to controller)

FTH
C-2 BIT 232 022800

FIGURE C-4. SET COMMAND

Syntax: FNC DCS :CH1 SET VOLT <value> CURL <value>
FNC DCS :CH1 SET CURR <value> VLTL <value>
SRX Set Range Maximum
SRN Set Range Minimum

Function: This operator is used in conjunction with FNC (in stimulus mode) to specify the output mode of the
power supply being programmed.

Description: The first operand is the noun modifier and the second operand specifies the value. The first operand
field of the command contains the four(4) letter mnemonic for the output mode of the power supply.
The choices are:

VOLT VOLTAGE MODE OPERATION
VLTL VOLTAGE LIMIT
CURR CURRENT MODE OPERATION
CURL CURRENT LIMIT

The second operand field of the command contains the value assigned to the chosen output mode.
This value may be specified as accurately as the resolution of the power supply allows. It can be
directly specified in ASCII integer, decimal, or in scientific notation.

There may be two (2) set commands, separated by a space (ASCII 32), for each power supply being
programmed. The following are the only allowable combinations:

VOLT with CURL
CURR with VLTL

The limit parameter (CURL or VLTL) may not be set without the main parameter. A polarity sign may
precede the VOLT or CURR value so that the power supply's polarity may be selected.

In the case of Kepco's BOP power supplies, the two related Op Codes, SRX and SRN are functionally
identical to the SET command, since there is only one range, 0 - maximum. The commands are
included only for compatibility.

Example: FNC DCS :CH1 SET VOLT 5 CURL 3 Power supply commanded to 5V (Voltage mode) with
 current limit of 3A.

FNC DCS :CH1 SET CURR 2 VLTL 17 Power supply commanded to 2A Current mode) with
 voltage limit of 17V

SET, SRX, SRN
BIT 232 022800 C-3

FIGURE C-5. RST — RESET COMMAND

FIGURE C-6. CNF, IST — CONFIDENCE TEST, INTERNAL SELF TEST COMMANDS

Syntax: RST DCS :CH1

Function: This operator is used to return a power supply to its power-on state. The output voltage and current
are programmed to zero.

Example: RST DCS :CH1 The power supply is reset.

RST

Syntax: CNF or IST

Function: Causes power supply to execute confidence test.

Description: The CNF operator commands the BOP to execute the confidence test procedure defined for the BOP
power supplies (IST is functionally identical to CNF for BOP power supplies). The procedure consists
of programming voltage and current to their maximum values, checking for error flags, then program-
ming voltage and current to zero. The results of CNF are obtained through the STA command.

Example: CNF Power supply executes confidence test.
IST Power supply executes self test.

CNF, IST
C-4 BIT 232 022800

FIGURE C-7. STA — STATUS COMMAND

Syntax: STA

Function: Causes power supply to return operating status to controller.

Description: This operator commands the power supply to report its present operating status. Status is reported in
the form of a message (character string) as defined below. Any catastrophic error conditions (indicated
by * in the table below) which exist will be reported, until the error condition is corrected. As required
by CIIL, all error messages begin with an ASCII “F” (Fault) followed by a 2 digit code, “07” (Halt). The
code that follows (DCSnn) indicates the type of device and the channel number. The next 3 digit code
describes the nature of the fault: “DEV” for device related errors or “MOD” for non-device errors, such
as syntax.

TABLE C-2. CIIL ERROR MESSAGES

ERROR MESSAGE EXPLANATION

F07 DCSnn DEV Power Loss The power supply has lost its input power. *

F07 DCSnn DEV Device Turned Off (BOP) A shutdown occurred due to overvoltage or overcurrent. *

F07 DCSnn DEV Over Temperature A shutdown occurred due to thermal causes. *

F07 DCSnn DEV Overload The voltage or current limit point was exceeded. *

F07 DCSnn DEV Voltage Fault The output voltage is not within limits (voltage mode). *

F07 DCSnn DEV Current Fault The output current is not within limits (current mode). *

F07 DCSnn DEV Load Path Fault Open or miswired load or error sense leads detected. *

F07 DCSnn MOD Invalid Command Improper syntax was used. **

F07 DCSnn DEV Not Ready The output voltage or current has not settled. **

F07 DCSnn DEV Device Not Present The specified power supply was not present during power up or
during the last DCL. **

F07 DCSnn DEV Device Not Responding The power supply has failed to communicate to the controller. **

F07 DCSnn DEV Invalid Voltage Range The programmed voltage is outside the power supply's range. **

F07 DCSnn DEV Invalid Current Range The programmed current is outside the power supply's range. **

F07 DCSnn DEV Set Modifier Error An improper SET command was sent. **

F07 DCSnn DEV Invalid Device ID The selected channel was not between 1-31. **

* Catastrophic error
** Non-Catastrophic error

STA
BIT 232 022800 C-5

FIGURE C-8. GAL — GO TO ALTERNATE LANGUAGE COMMAND

Syntax: GAL

Function: Enables utility commands which change error handling defaults.

Description: This command enables the utility commands listed below. If no GAL command is issued, the default
conditions are T0, F1, and P1. Once the GAL command is issued, the appropriate utility command
may be sent to change the default condition.

Example: GAL Enables utility commands.
F0 Causes controller to ignore error conditions during FTH command.

TABLE C-3. CIIL ERROR HANDLING UTILITY COMMANDS

UTILITY COMMAND DESCRIPTION

T0
Instructs non-catastrophic error messages to be erased from memory if any
command is sent prior to STA command.

T1
Instructs non-catastrophic error messages to be stacked in memory until
STA command is sent.

F0 Fetch Mode 0. Ignores error conditions when performing FTH command.

F1
Fetch Mode 1. Reports any error conditions which are present during FTH
command.

P0
Power Loss Mode 0. Reports a power loss message only once until power
is restored to the power module.

P1
Power Loss Mode 1. Continuously reports a power loss message until
power is restored to the power module.

Note: The defaults are T0, F1 and P1

GAL
C-6 BIT 232 022800

APPENDIX D - TERMINAL EMULATION PROGRAM

D.1 INTRODUCTION

Appendix D is a C language program used with an IBM-PC-compatible computer as a terminal
emulator, allowing the BOP to be controlled directly from a keyboard. Refer to Appendix F for all
functions. (See PAR. 1.4 to order Sample Programs diskette.)

To modify this program for computers other than IBM-PC-compatible (e.g., Macintosh), four
ROM BIOS routines must be replaced with their equivalent (see Table D-1).

The Terminal Emulation program is a loop in which typed characters from the computer key-
board are sent to the BIT Card using the SendWecho function (see Appendix F). This allows the
BOP to be exercised by typing the appropriate commands (SCPI or CIIL) directly from the key-
board. Responses to the typed commands are received from the BIT Card and displayed on the
computer monitor. Typing ALT+Q ends the program.

The Terminal Emulation program can be set to run on either COM 1 or COM 2. For convenience
it is recommended that two separate programs be created, one for COM 1, one for COM 2.

If this program is started before power is applied to the BOP, the sign on message will be dis-
played on the computer monitor when the BOP is powered up:

KEPCO BOP BIT232 REV. 1.0
POWER SUPPLY Type = XX (BOP YY-Y)

where XX = hex value representing setting of Power Supply Identifications switch
S2 (see PAR. 2.2.2)

YY-Y = BOP Model No. (e.g., 20-5)

NOTE: If switch S2 is set to an illegal setting, the message will read:
UNDEFINED BOP TYPE

TABLE D-1. ROM BIOS ROUTINES TO BE REPLACED WITH EQUIVALENT
FOR NON-IBM-PC-COMPATIBLE PC’S

ROM BIOS ROUTINE FUNCTION

open_port(n) n=0 for COM1 or n=1 for COM 2 Initialize the serial port.

put_serc(n,c) Write the character c to COM 1 or COM 2 serial port.

get_serc(n) Read a character from the serial port.

in_ready(n) Fetch the current status of the serial port.
BIT 232 2/28/00 D-1

/**
* RS232 interactive driver for BIT232
* use ROM BIOS INT 14 function calls
**/
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

#define TRUE 1
#define FALSE 0

#define PORT 2 /* serial port */

/* function prototypes */
void open_port(int n);
void put_serc(int n, int c);
int get_serc(int n);
int in_ready(int n);
int SendWecho(int n,int c);
void SendCommand(char *send_cmmd);
void SendCmmdWready(char *send_cmmd);

void main(void)
{

int c;
clrscr();
printf(“ ** BIT232 Interactive Driver Program - Press ALT + Q to exit \n”);

/* open the serial port */
open_port(PORT);

/* main program loop */
while (TRUE) {

/* process keyboard presses */
if (kbhit()) {

c = getch();
switch (c) {

case 0: /* exit on Alt-X */
/* if ALT + Q */
if (getch() == 16)

exit(0);
break;

default:
{
SendWecho(PORT,c);
/* display it if one was available */
if (c != EOF)

putch(c);
if (c == ‘\r’)

putch(‘\n’);
}

}
}
/* process remote characters */
if (in_ready(PORT)) {

/* get character from serial port*/
c = get_serc(PORT);
/* display it if one was available */
if (c != EOF)

putch(c);
}

}
}

D-2 BIT 232 2/28/00

APPENDIX E - RS232 COMMAND LOOP PROGRAM

E.1 INTRODUCTION

This appendix is a C language program used with an IBM-PC-compatible computer running a
terminal emulation program to set up a command loop. Refer to Appendix F for all function pro-
totypes. (See PAR. 1.4 to order Sample Programs diskette.)

To modify this program for computers other that IBM-PC-compatible (e.g., Macintosh), four
ROM BIOS routines must be replaced with their equivalent (see Table E-1).

The Command Loop program performs the following functions

1. Interrogates the power supply (SCPI command VOLT?MAX) to determine the maximum volt-
age of the BOP (XXX).

2. Sets the voltage to full scale, current to 0.5A (VOLT XXX;CURR 0.5).

3. Reads the voltage and current (MEAS:VOLT?CURR?) and displays it on the computer mon-
itor.

4. Sets voltage to minus full scale, current to 0.5A (VOLT –XXX;CURR 0.5).

5. Reads the voltage and current (MEAS:VOLT?CURR?) and displays it on the monitor.

6. Sends a reset command (*RST).

7. Reads the voltage and current (MEAS:VOLT?CURR?) and displays it on the monitor.

8. Sends a test command (*TST?).

9. Reads the voltage and current (MEAS:VOLT?CURR?) and displays it on the monitor.

10.Checks for errors (SYST:ERR?); the message: 0. “No Error” is displayed on the monitor.

11. The program continuously cycles through steps 1 through 10 above; to exit the program
press ALT+Q.

This program can be set to run on either COM 1 or COM 2; for convenience it is recommended
that the user create two separate programs, one for COM1, one for COM 2.

TABLE E-1. ROM BIOS ROUTINES TO BE REPLACED WITH EQUIVALENT
FOR NON-IBM-PC-COMPATIBLE PC’S

ROM BIOS ROUTINE FUNCTION

open_port(n) n=0 for COM1 or n=1 for COM 2 Initialize the serial port.

put_serc(n,c) Write the character c to COM 1 or COM 2 serial port.

get_serc(n) Read a character from the serial port.

in_ready(n) Fetch the current status of the serial port.
BIT 232 022800 E-1

/**
* RS232 command loop program for BIT232
* use ROM BIOS INT 14 function calls
**/
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

#define TRUE 1
#define FALSE 0

#define PORT 2 /* serial port */

/* function prototypes */
void open_port(int n);
void put_serc(int n, int c);
int get_serc(int n);
int in_ready(int n);
int SendWecho(int n,int c);
void SendCommand(char *send_cmmd);
void SendCmmdWready(char *send_cmmd);

void main(void)
{

char string[80], stringm[80], wstr[80];
char volt[4], *curr = “;curr 0.5”;
char *test = “*tst?”;
char *reset = “*rst”;
char *msvolt = “meas:volt?;curr?”;
char *sterror = “syst:err?”;
char *id = “*idn?”;
int j,k,c,vl;

 int on_line;
double max;

clrscr();
printf(“ ** BIT232 Command Loop Program - Press ALT + Q to exit \n”);

/* open the serial port */
open_port(PORT);

/* get power supply id */
strcpy(string, id);
SendCommand(string);

on_line = FALSE;
for (k=0; k < 10000; k++)

{
if (in_ready(PORT)) {

/* get character from serial port*/
c = get_serc(PORT);
/* display it if one was available */
if (c != EOF)

{
putch(c);
on_line = TRUE;

}
}

}

if (on_line == FALSE)
 exit(0);

/* change the first \r in end of string */
for (j = 0; j < strlen(string); j++)
E-2 BIT 232 022800

{
if (string[j] == ‘\r’)
 string[j] = ‘\0’;

}

/* get maximum voltage */
strcpy(string, “volt?max”);
SendCmmdWready(string);
/* change the first \r in end of string */
for (j = 0; j < strlen(string); j++)

{
if (string[j] == ‘\r’)
 string[j] = ‘\0’;

}
max = atof(string);

if (max <= 10.0)
 vl=1;
else

{
if (max <= 100.0)

vl=2;
else

vl=3;
}

j=0;
volt[0]=string[j];
volt[1]=’\0’;
j ++;
if (vl > 1)

if(string[j] == ‘.’)
{
j ++;
volt[1]=string[j];
volt[2]=’\0’;

}
else

{
volt[1]=string[j];
volt[2]=’\0’;

}
if (vl > 2)

if(string[j] == ‘.’)
{
j ++;
volt[2]=string[j];
volt[3]=’\0’;

}
else

{
volt[2]=string[j];
volt[3]=’\0’;

}
strcpy(string, “volt “);
strcat(string, volt);
strcat(string, curr);

strcpy(stringm, “volt -”);
strcat(stringm, volt);
strcat(stringm, curr);

/* main program loop */
while (TRUE) {

/* process keyboard presses */
if (kbhit()) {
BIT 232 022800 E-3

c = getch();
if (c == 0)

/* exit on Alt-Q */
if (getch() == 16)

exit(0);
}
strcpy(wstr,string);
/* set voltage to full scale, current 0.5A */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++)

for (k = 0; k < 100; k++);

strcpy(wstr,msvolt);
/* read voltage and current */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++);

strcpy(wstr,stringm);
/* set voltage to minus full scale, current 0.5A */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++)

for (k = 0; k < 100; k++);

strcpy(wstr,msvolt);
/* read voltage and current */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++);

strcpy(wstr,reset);
/* send reset command - *rst */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++)

for (k = 0; k < 100; k++);

strcpy(wstr,msvolt);
/* read voltage and current */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++);

strcpy(wstr,test);
/* send test command - *tst? */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++)

for (k = 0; k < 100; k++);

strcpy(wstr,msvolt);
/* read voltage and current */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++);

strcpy(wstr,sterror);
/* read error output queue */
SendCmmdWready(wstr);
for (j = 0; j < 10000; j++);

}
}

E-4 BIT 232 022800

APPENDIX F - C LANGUAGE FUNCTIONS

F.1 INTRODUCTION

This appendix contains examples of C language functions which can be used as the building
blocks for unique programs to interface the BIT Card and associated power supply with an IBM-
PC-compatible computer. These functions are used in the sample programs shown in Appendi-
ces D and E.

F.2 OPEN SERIAL PORT USING ROM BIOS ROUTINE

This function opens the serial port selected by n, using the ROM BIOS routine; if the computer is
not IBM-PC-compatible the ROM BIOS routine must be replaced by an equivalent.

/* open serial port using ROM BIOS routine */
void open_port(int n)
{

union REGS regs;

/* AH has the function code */
regs.h.ah = 0x00;
/* AL has the baud rate for 8 bits No parity 1 Stop bit */
regs.h.al = 0xe3;
/* DX has the port number */
if (n == 1)

regs.x.dx = 0;
else

regs.x.dx = 1;
/* call the ROM BIOS routine */
int86(0x14, ®s, ®s);

}

F.3 PUT CHARACTER TO SERIAL PORT

This function sends a character (c) to the serial port specified by (n) using the ROM BIOS rou-
tine; if the computer is not IBM-PC-compatible the ROM BIOS routine must be replaced by an
equivalent.

/* put character to serial port */
void put_serc(int n, int c)
{

union REGS regs;

/* AH has the function code */
regs.h.ah = 0x01;
/* AL has the character */
regs.h.al = c;
/* DX has the port number */
if (n == 1)

regs.x.dx = 0;
else

regs.x.dx = 1;
/* call the ROM BIOS routine */
int86(0x14, ®s, ®s);

}

BIT 232 022800 F-1

F.4 SEND, WAIT FOR ECHO

This function sends a character to the serial port specified by (n), allows a small delay (about 50
msec) for the character to be received by the BIT card, analyzed, put in a buffer and echoed
back. If the BIT Card did not receive the character, or if the time-out expires, the BIT card
returns the EOF character.

This command could be modified so that if the time-out expires, the last character is sent to the
BIT Card again.

int SendWecho(int n, int c)
{
int j;

/* send to the serial port */
put_serc(n, c);

/* timeout delay = 1000 - biger for faster computers */
for(j=1;j<1000;j++)
 if (in_ready(PORT)) {

/* get character from serial port*/
c = get_serc(PORT);
return c;

 }
/* if timeout - no character returned */
c = EOF;
return c;

}

F.5 GET CHARACTER FROM SERIAL PORT

This function accepts a character from the serial port specified by n using the ROM BIOS rou-
tine; if the computer is not IBM-PC-compatible the ROM BIOS routine must be replaced by an
equivalent.

/* get character from serial port */
int get_serc(int n)
{

union REGS regs;

/* AH has the function code */
regs.h.ah = 0x02;
/* DX has the port number */
if (n == 1)

regs.x.dx = 0;
else

regs.x.dx = 1;
/* call the ROM BIOS routine */
int86(0x14, ®s, ®s);

/* return EOF if timed out */
if (regs.h.ah & 0x80)

return EOF;
return regs.h.al;

}

F-2 BIT 232 022800

F.6 CHECK TO SEE IF A CHARACTER WAS RECEIVED

This function checks to see if a character was received using the ROM BIOS routine; if the com-
puter is not IBM-PC-compatible the ROM BIOS routine must be replaced by an equivalent.

/* check to see if a character was received */
int in_ready(int n)
{

union REGS regs;

/* AH has the function code */
regs.h.ah = 0x03;
/* DX has the port number */
if (n == 1)

regs.x.dx = 0;
else

regs.x.dx = 1;
/* call the ROM BIOS routine */
int86(0x14, ®s, ®s);

/* check for received data ready */
if (regs.h.ah & 1)

return TRUE;
return FALSE;

}

F.7 SEND COMMAND
This function sends a character string to the BIT Card and sends the echoed characters to the
monitor screen. The SendWecho function is used to send the command, byte by byte, to the BIT
Card. After the last byte of the command is sent, the Carriage Return (CR) character is sent to
the BIT Card to cause the parser to execute the command, and CR and Line Feed (LF) charac-
ters are sent to the monitor screen.

This function could be modified by comparing the character sent with the echoed character,
then if they do not match, send the last character again.

void SendCommand(char *send_cmmd)
{
int chr;

while(*send_cmmd != ‘\0’) {
/* output character here */
chr = *send_cmmd ++;
SendWecho(PORT,chr);
/* display returned byte if available */
if (chr != EOF)

putch(chr);
}

/* output end command */
chr = ‘\r’;
SendWecho(PORT,chr);
/* display returned byte if available */
if (chr != EOF)

putch(chr);
if (chr == ‘\r’)

putch(‘\n’);
}

BIT 232 022800 F-3

F.8 SEND COMMAND AND WAIT UNTIL READY

This function uses the SendCommand function to send commands to the BIT Card and display
echoed characters and response messages on the screen until the > character is received,
indicating that parsing and execution of the command has been completed.

void SendCmmdWready(char *send_cmmd)
{
int not_endcmd;
char recv, *st_buff;

not_endcmd = TRUE;
st_buff = send_cmmd;
SendCommand(send_cmmd);
send_cmmd =st_buff;
while(not_endcmd)

{
if (in_ready(PORT)) {

/* get character from serial port*/
recv = get_serc(PORT);
/* display it if one was available */
if (recv != EOF)

{
putch(recv);
*send_cmmd = recv;
send_cmmd ++;
if (recv == ‘>’)

not_endcmd = FALSE;
}

}
}

*send_cmmd = ‘\0’;

}

F-4 BIT 232 022800

APPENDIX G - BASIC LANGUAGE TERMINAL EMULATION

G.1 INTRODUCTION

This appendix presents a program written in BASIC language intended to aid the user in build-
ing BASIC language test programs using the BIT Card. (See PAR. 1.4 to order Sample Pro-
grams diskette.)

The BASIC Language Terminal Emulation program performs a series of commands, then allows
the user to type commands and control a BOP via the BIT Card from a keyboard. The keyboard
commands are displayed on the screen while the commands are executed and response mes-
sages are displayed on the screen.

SCPI commands are used, however the program may easily be modified to use CIIL commands
by changing the applicable character strings.

The program is written to use COM port 2; to use COM port 1 change the following line:
OPEN “COM2:9600,N,8,1,RS,CS,DS” FOR RANDOM AS #1 LEN = 256

to:
OPEN “COM1:9600,N,8,1,RS,CS,DS” FOR RANDOM AS #1 LEN = 256

With the program loaded under a BASIC interpreter, press ALT+R to run the program or ALT+Q
to exit.

The program performs the following functions

1. Request power supply identification (*IDN?).

2. Reset the power supply (*RST).

3. Test the power supply (*TST).

4. Check for errors (SYST:ERR)

5. Wait for keyboard commands. When keyboard commands are entered, the echoed com-
mands and response messages are displayed.

DEFINT A-Z

DECLARE SUB SendWecho (SendChar$)
DECLARE SUB SendCommand (SendCmmd$)
DECLARE SUB SendCmmdWready (SendCmd$)
DECLARE SUB Filter (InString$)
CONST FALSE = 0, TRUE = NOT FALSE

COLOR 7, 1 ‘ Set screen color.
CLS

Quit$ = CHR$(0) + CHR$(16) ‘ Value returned by INKEY$
‘ when ALT+q is pressed.

‘ Set up prompt on bottom line of screen and turn cursor on:
LOCATE 24, 1, 1
PRINT STRING$(80, “_”);
LOCATE 25, 1
PRINT TAB(30); “Press ALT+q to quit”;
BIT 232 2/28/00 G-1

VIEW PRINT 1 TO 23 ‘ Print between lines 1 & 23.

‘ Open communications (9600 baud, no parity, 8-bit data,
‘ 1 stop bit, 256-byte input buffer):
OPEN “COM2:9600,N,8,1,RS,CS,DS” FOR RANDOM AS #1 LEN = 256

 ‘ Check the RS 232 interface if characters are waiting (EOF(1) is
 ‘ true) and get them
 IF NOT EOF(1) THEN

 ‘ LOC(1) gives the number of characters waiting:
 SendChar$ = INPUT$(LOC(1), #1)
 END IF

 ComString$ = “*idn?”
 SendCmmdWready ComString$

 ComString$ = “*rst”
 SendCmmdWready ComString$

 ComString$ = “*tst?”
 SendCmmdWready ComString$

 ComString$ = “syst:err?”
 SendCmmdWready ComString$

DO ‘ Main communications loop.

 KeyInput$ = INKEY$ ‘ Check the keyboard.

 IF KeyInput$ = Quit$ THEN ‘ Exit the loop if the user
 EXIT DO ‘ pressed ALT+q.

 ELSEIF KeyInput$ <> ““ THEN ‘ Otherwise, if the user has pressed a key
 SendWecho KeyInput$
 END IF ‘ character typed to the modem.

 PRINT KeyInput$; ‘ then print.

 ‘ Check the modem. If characters are waiting (EOF(1) is
 ‘ true), get them and print them to the screen:
 IF NOT EOF(1) THEN

 ‘ LOC(1) gives the number of characters waiting:
 CharInput$ = INPUT$(LOC(1), #1)

 Filter CharInput$ ‘ Filter out line feeds and
 PRINT CharInput$; ‘ backspaces, then print.
 END IF

LOOP

CLOSE ‘ End communications.
CLS
END

‘

G-2 BIT 232 2/28/00

‘ ========================= FILTER ==========================
‘ Filters characters in an input string.
‘ ==
‘
SUB Filter (InString$) STATIC

 ‘ Look for backspace characters and recode them to
 ‘ CHR$(29) (the LEFT cursor key):
 DO
 BackSpace = INSTR(InString$, CHR$(8))
 IF BackSpace THEN

 MID$(InString$, BackSpace) = CHR$(29)
 END IF
 LOOP WHILE BackSpace

 ‘ Look for line-feed characters and remove any found:
 DO
 LineFeed = INSTR(InString$, CHR$(10))
 IF LineFeed THEN

 InString$ = LEFT$(InString$, LineFeed - 1) + MID$(InString$, LineFeed + 1)
 END IF
 LOOP WHILE LineFeed

END SUB

‘
‘ ========================= Send Command =====================
‘ Send command line and wait for the command to be completed
‘ ==
‘
SUB SendCmmdWready (SendCmd$) STATIC

 SendCommand SendCmd$

 Notendcm = TRUE

 WHILE Notendcm
 ‘ Check the modem. If characters are waiting (EOF(1) is
 ‘ true), get them and print them to the screen:
 IF NOT EOF(1) THEN

‘ LOC(1) gives the number of characters waiting:
CharInput$ = INPUT$(LOC(1), #1)
IF CharInput$ = CHR$(62) THEN
 Notendcm = FALSE
END IF
Filter CharInput$
PRINT CharInput$; ‘ backspaces, then print.

 END IF
 WEND
END SUB

‘

BIT 232 2/28/00 G-3

‘ ========================= Send Command =====================
‘ Send command line using SendWecho
‘ ==
‘
SUB SendCommand (SendCmmd$) STATIC
 FOR K = 1 TO LEN(SendCmmd$)
 Istr$ = MID$(SendCmmd$, K, 1)
 SendWecho Istr$
 PRINT Istr$; ‘ then print.
 NEXT K

 Istr$ = CHR$(13)
 SendWecho Istr$
 PRINT Istr$
END SUB

‘
‘ ========================= Send with Echo ===================
‘ Send character and wait for the character to be echoed back
‘ ==
‘
SUB SendWecho (SendChar$) STATIC
 PRINT #1, SendChar$; ‘ send the pressed key

 FOR J = 1 TO 100

 ‘ Check the RS 232 interface if characters are waiting (EOF(1) is
 ‘ true), get them and print them to the screen:
 IF NOT EOF(1) THEN

SendChar$ = INPUT$(1, #1)
Filter SendChar$ ‘ Filter out backspace
EXIT FOR

 END IF
 ‘ If timeout expire return empty string
 SendChar$ = ““
 NEXT J

END SUB
G-4 BIT 232 2/28/00

	FIGURE 1-1. Remotely Controlled Power Supply Configurations Using Kepco Products
	SECTION 1 - INTRODUCTION
	1.1 Scope of Manual
	1.2 General Description
	TABLE 1-1. Kepco BIT 232, 488 and 4882 Digital Programming Cards

	1.3 Specifications, BIT 232/BIT 232-F
	1.4 Accessories
	TABLE 1-2. Applicability of BIT Interface Cards to Specific BOP Models
	TABLE 1-3. Specifications, BIT 232 and BIT 232-F
	SECTION 2 - INSTALLATION

	2.1 Unpacking and Inspection
	2.2 Set Start-up DefaultS
	2.2.1 Start-up Language Default
	2.2.2 Set Power Supply Identification Switch

	2.3 Installation of BIT Card into the BOP
	FIGURE 2-1. Installation of BIT Card into BOP
	FIGURE 2-2. BIT 232/BIT 232-F Switch and Adjustment Locations
	TABLE 2-1. Power Supply Identification Switch S2 Setting�

	2.4 Input/OUtput Signals
	TABLE 2-2. Input/Output Pin Assignments�
	FIGURE 2-3. RS 232C Connector

	2.5 RS 232 Connections
	SECTION 3 - CALIBRATION

	3.1 Equipment Required
	3.2 Adjustment of the Bop ±10 Volt Calibration Controls (R31, R32)
	3.3 Adjustment of the Ammeter Zero (R50)
	FIGURE 3-1. BOP Power Supply, Internal Calibration Control Locations

	3.4 Adjustment Of The Output Voltage Zero (R81)
	3.5 Adjustment of the Full Scale Output Voltage (R21)
	TABLE 3-1. BOP Power Supply, Internal Calibration Controls

	3.6 Voltage Reading Zero Calibration (R35)
	3.7 Voltage Reading Calibration (R19)
	3.8 Adjustment of the Output Current Zero (R83)
	3.9 Adjustment of the Full Scale Output Current (R22)
	3.10 Current Reading Zero Calibration (R36)
	FIGURE 3-2. Current Shunt Connections

	3.11 Current Reading Calibration (R20)
	SECTION 4 - OPERATION

	4.1 General
	4.2 RS232-C Bus Protocol
	4.3 RS232 Implementation
	4.4 SCPI Programming
	4.4.1 SCPI Messages
	4.4.2 Common Commands/Queries
	4.4.3 SCPI Subsystem Command/Query Structure
	FIGURE 4-1. Tree Diagram of SCPI Commands Used with BIT 232/BIT 232-F Interface Card

	4.4.4 Program Message Structure

	4.4.4.1 Keyword
	TABLE 4-1. SCPI Command Index
	TABLE 4-2. Rules Governing Shortform Keywords
	FIGURE 4-2. Message Structure

	4.4.4.2 Keyword Separator
	4.4.4.3 Query Indicator
	4.4.4.4 Data
	4.4.4.5 Data Separator
	4.4.4.6 Message Unit Separator
	4.4.4.7 Root Specifier
	4.4.4.8 Message Terminator
	4.4.5 Understanding The Command Structure
	4.4.6 Program Message Syntax Summary

	4.5 CIIL Programming
	4.6 Programming Examples
	APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS
	TABLE A-1. SCPI Common Command/query Index
	FIGURE A-1. *CLS — Clear Status Command
	FIGURE A-2. *ESE — Standard Event Status Enable Command
	FIGURE A-3. *ESE? — Standard Event Status Enable Query
	FIGURE A-4. *ESR? — Event Status Register Query
	FIGURE A-5. *IDN? — Identification Query
	FIGURE A-6. *OPC — Operation Complete Command
	FIGURE A-7. *OPC? — Operation Complete Query
	FIGURE A-8. *RST — Reset Command
	FIGURE A-9. *SRE — Service Request Enable Command
	FIGURE A-10. *SRE? — Service Request Enable Query
	FIGURE A-11. *STB? — Status Byte Register Query
	FIGURE A-12. *TRG — Trigger Command
	FIGURE A-13. *TST? — Self Test Query
	FIGURE A-14. *WAI — Wait-to-continue Command

	APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS
	TABLE B-1. SCPI Subsystem Command/query Index
	FIGURE B-1. INITiate[:IMMediate] Command
	FIGURE B-2. INITiate:CONTinuous Command
	FIGURE B-3. INITiate:CONTinuous Query
	FIGURE B-4. MEASure:CURRent? and MEASure:VOLTage? Queries
	FIGURE B-5. CURRent Command
	FIGURE B-6. CURRent Query
	FIGURE B-7. CURRent:TRIGgered Command
	FIGURE B-8. CURRent:TRIGgered Query
	FIGURE B-9. VOLTage Command
	FIGURE B-10. VOLTage Query
	FIGURE B-11. VOLTage:TRIGgered Command
	FIGURE B-12. VOLTage:TRIGgered Query
	FIGURE B-13. FUNCtion:MODE Command
	FIGURE B-14. STATus:OPERation:CONDition Query
	FIGURE B-15. STATus:OPEReration:ENABle Command
	FIGURE B-16. STATus:OPEReration:ENABle Query
	FIGURE B-17. STATus:OPERation QUERY
	FIGURE B-18. STATus:PRESet Command
	FIGURE B-19. STATus:QUEStionable? Query
	FIGURE B-20. STATus:QUEStionable:CONDition? Query
	FIGURE B-21. STATus:QUEStionable:ENABle Command
	FIGURE B-22. STATus:QUEStionable:ENABle? Query
	FIGURE B-23. SYSTem:ERRor? Query
	FIGURE B-24. SYSTem:LANGuage Command

	APPENDIX C - CIIL COMMAND DEFINITIONS
	TABLE C-1. CIIL Subsystem Command/query Index
	FIGURE C-1. FNC — Function Command
	FIGURE C-2. INX — Initiate Op Code Command
	FIGURE C-3. FTH — Fetch Command
	FIGURE C-4. SET Command
	FIGURE C-5. RST — Reset Command
	FIGURE C-6. CNF, IST — Confidence Test, Internal Self Test Commands

	TABLE C-2. CIIL Error Messages
	FIGURE C-7. STA — Status Command

	TABLE C-3. CIIL Error Handling Utility Commands
	FIGURE C-8. GAL — Go to Alternate Language Command

	APPENDIX D - TERMINAL EMULATION PROGRAM
	TABLE D-1. ROM BIOS Routines to be replaced with equivalent for non-IBM-PC-compatible PC’s

	APPENDIX E - RS232 COMMAND LOOP PROGRAM
	TABLE E-1. ROM BIOS Routines to be replaced with equivalent for non-IBM-PC-compatible PC’s

	APPENDIX F - C LANGUAGE FUNCTIONS
	APPENDIX G - BASIC LANGUAGE TERMINAL EMULATION

