INSTRUCTION MANUAL

TMA PC-27

POWER MODULE CONTROL
INTERFACE BOARD

MODEL
TMA PC-27

POWER MODULE CONTROL
INTERFACE BOARD

ORDER NO. REV. NO.

KEPCO INC.

IMPORTANT NOTES:
1) This manual is valid for the following Model and associated serial numbers:
MODEL SERIAL NO. REV. NO.

2) A Change Page may be included at the end of the manual. All applicable changes and
revision number changes are documented with reference to the equipment serial num-
bers. Before using this Instruction Manual, check your equipment serial number to identify
your model. If in doubt, contact your nearest Kepco Representative, or the Kepco Docu-
mentation Office in New York, (718) 461-7000, requesting the correct revision for your par-
ticular model and serial number.

3) The contents of this manual are protected by copyright. Reproduction of any part can be
made only with the specific written permission of Kepco, Inc.

Data subject to change without notice.

\Q}Dé KEPCO.

THE POWER SUPPLIER™

©1996, KEPCO, INC
P/N 243-0798 =

KEPCO, INC. ® 131-38 SANFORD AVENUE ® FLUSHING, NY. 11352 U.S.A. ® TEL (718) 461-7000 @ FAX (718) 767-1102
email: hgq@kepcopower.com ® World Wide Web: http://www.kepcopower.com

TABLE OF CONTENTS

PARAGRAPH PAGE
SECTION 1
INTRODUGTION ..ot eeeeae et rae e e e b e se e sa o s e s b e Rt e e e bt e oo b s bbbttt 1-1
1.1 PUIPOSE OF MANUEL ..ottt 1-1
1.2 GENEIal DESCHPHON ... it ettt ettt e trs e e 1-1
SECTION 2
EQUIPMENT CONFIGURATIONc.ooooiiiiiiiiimiiiiiiii i 2-1
2 1 Base Address And Hardware Interrupt Level ... 2-1
2.2 Configuring The Base AdAress INEITUPL ... 2-2
2.3 Configuring The Base Hardware INterrupt ... 2-2
SECTION 3
INSTALLATION .ot cte et esees s ebea s sseasben s ere e s s e bt s T s e R R e e b s bt 3-1
31 TIMA PC-27 BOBIT ...eoveeceiuieieuieeeeeieebese e ssese s aess s s st st h e 341
3.2 TMA PC-27 Interface To Mat Power Module..............covriiimiiiee 3-1
3.3 DIIVET SOMWEIE ...coeveeveieieeeeteseeesrerceseeresbeaie s sa e s s s e b s b s e s o a s S e e s 3-1
SECTION 4
PROGRAMMING WITH THE TMA PC-27 ..ottt 4-1
A GENEIA oo v eeeeeeeeeeeeae e eeeeeeesseseeseasasaasesaesteaeebese s he R e g e eE SRR LRSS 4-1
4.2 USING The PC-27 SOMWANEooouierrieersersimiimirs st st e 4-1
4.3 Introduction To The Kpl Program Managercceriiiiimimnin s 41
4.4 ComMANd SEt SUIMIMATYcoorcrvrerrieiiieteress s ettt 4-2
4.5 Ciil COMMANG DESCHPONScutrvriiririiriieieteie sttt 4-3
4.5.1 FUNCHON COMMANG........ooeeieiierieeeeienteraeeesreraar s teet i sere s sis e st b et s et 4-3
452 SET,SRX,and SRN COMMANGSco.ooememiiiiiriiiss s 4-3
4.5.3 Open/close Relay COMMANGSovewnimnirmimniiissssii i 4-4
4.5.4 RESEL COMMEANGoiveiiieieierreeteeseeseeessr et e eae e e st st et nar b s e bbb 4-4
4.5.5 Confidence Test COMMANGcccoiiimiimrinen e 4-4
4.5.6 internal Self Test COMMEANGcoooireeiiiinir e st 4-4
4.5.7 Status COMMENGooooveriirieteeerere et e a sttt 4-4
4.5.8 INItIAte COMMEANG oo ieeeiieeee et e st st 4-4
4.5.9 FEtCh COMMENG ...oovoviietiiteieeeeese et e ss et st st b e s ss s 4-5
4.6 KPSL Command DESCHPHONSccooviiirmrmireseriinicnetsieit st e 4-5
4.6.1 SEt COMMEANG ...ovoveviveeeeiereeeeeiesiesceseaseresseb e e b e bbbt 4-5
4.6.2 FEtCh COMMANGoovoeeeeeeeieeereeeestenesir st s eSSt 4-5
4.6.3 ClOSE COMMANGovivieieeeeeieeeiesseeteseaesresssrse st e a b s oS St 4-5
4.6.4 OPEN COMMENGoocrvuimuimmissimsersesse e sss s 4-5
4.6.5 RESEt COMMENGveiveeerireseesreserseaeeesaeb et s s bbbt 4-5
4.6.6 Confidence Test COMMENGccuewirrirrirermee ettt 4-6
4.6.7 Internal Self Test COMMEANGc.ccooomiiiriee b 4-6
4.6.8 Status Commandcceeveeeererrarenns et er s 4-6
4.7 Utility CommMand DESCHPHONSc.ceuemermrimnississis s 4-7

© Kepco, Inc. -

TABLE OF CONTENTS continued

PARAGRAPH PAGE
4.7.1 Remote ENable COMMANGccoceieirreeencree et 4-6
4.7.2 GOTO LOCAI COMMANG.........oiiieeieereemieeiiie ettt ame e e e st s ettt b sttt 4-6
4.7.3 Device Clear COMMENG........oouiirrierirmrer it ei e st 4-6
4.7.4 System Reset COMMANGooiiieiiiiieii st 4-6
4.7.5 VErsion COMMANGccovoeveriiurienmreeiitereissaraearaaes s s sttt st s 46
4.7.6 Error Handling COMMANGScooviuiiminriiree it 4-6

4.8 ETTON MESSAGESovivvereereiraeiiuemesissssesesns st tes s a0 4-7

SECTION §
KPL PROGRAM MANAGERocooiiiiieeieie ettt s st st 5-1

5.4 GEIEIAl ..vvoveeeeeeeeeeeee et et eeeseseseese e eaeue e e SRR R RS h R e 5-1

5.2 USING THE MENU ...oovriaiiiimieiietetis sttt b 5-1

5.3 USING THOt KBYS' ...c.euiveiueiiimineiscisisst st s 5-2

5.4 INEIPL FIIB oooeeeeeeeeeeeeeeeee et eaees et ae s s e iescebens e s s s assh e s s tE £ h b e s oS LR 5-2

5.5 Initiating The IEEE-488 GPIB And TMA PC-27 ..ot 5-2

56 Creating Programs And Subroutines With KPL ..o 5-2

5.7 KIPL EGIOF oeovvivvoeeeeeeeeee e eeeereeveeseseeseeeeesess s et s as s e e e be s se e s ea e s h e e SRR SRS 5-3

5.8 KPL Commands AnNd FEALUIEScoeiiriiirririeisetreie s e 5-3
5.8.1 Calling Subroutines and PrOGraMSc.....couiruritiimstiss s 5-3
5.8.2 DEfiNing VAMADIEScoiimrmiiemniiciieieic it s 5-4
5.8.3 BUIILIN VAMADIES -ocveoveiviieietieii e sttt s s 54
5.8.4 Comparing Data StriNGS.........ccoovrirureieiemmiin s 54
5.8.5 GPIB COMMANAS ...ocoovrveeieeiirtereeeestatneseemasaasesestest st E s 5-5
5.8.6 Selecting An ACHVE DBVICEccouuiuiiiimiiiri s 5-5
5.8.7 1/O COMMEBNGS ...eoovereivereeueeeraseeeseeseaesassaseasasasssieshes et s s e s as b e o b et s s 5-5
5.8.8 Creating An AUGIDIE BEEPoooimriueiemmeiieiciniinini it 5-5
5.8.9 Creating A TiMe DEIAYcoiueiicirrueiiitiniei s 5-6
5.8.10 Getting Input From The Keyboard ... 56
5.8.11 Defining HOt KEYS ...c.c.viiiiirieiieiee it s 5-6
5.8.12 Using The BuUilt I COUNLET..........ouiiiiiiiiiiit e 5-6
5.8.13 Jumping To Another Part Of A Programccooevniiniiins e 5-6
5.8.14 Clearing The Keyboard Buffer, 'Hot Keys’, And The MenU......ccveceericiiriie e 5-7
5.8.15 MEMOTY COMMENGScormmrmiurrsesrenseeieseisrns st s 5-7
5.8.18 SEtting PrECISIONvirimrrerieret sttt 5-7
5.8.17 Printing TO THE SCIEEMuommimemiimerieiniens s 5-8
5.8.18 Printing TO The PrINEN........ccouiriureeneeniieninimnimsnis st ettt 5-8
5.8.19 SEtting TOIBFANCEcoovrruiierseies ettt s 5-8
5.8.20 Video Display COMMANGScccewrrureermneermsimmiimsiss s 5-8

© Kepco, Inc. =fj-

LIST OF ILLUSTRATIONS

FIGURE

11 MOGEI TIMA PC-27 ..ot eeeter ettt ettt st s ens s bn e s e e sae s ab s en et e anees
2-1 Base Address and Hardware Interrupt Level Jumper Blocks, Location
2-2 Base Address Jumper EXamples ...
2-3 Hardware Interrupt Level, Jumper Locations...............coeiiiniiinn

3.1 PG‘ZY MAT Power MOdule, InterfaceHllIIIllIIlllllllIIIIIlIIIII”IIII'III"IIIllllll"' """"""""""

LIST OF TABLES

TABLE

2-1 Base Address and Hardware Interrupt Level..........ocoiiii e
2-2 Optional Base AdArESSESccooiuiiieiriir i

APPENDIX
A. QUICK CHECKOUT

A1 Getting StAMEdc.cueiiiiiiii i

B. PROGRAMMING

B.1 KPL Programming EXAmPpIEScccocereenmiininiiiiiiien s
B.2 "C" Language Program EXample...........ccccoovinin
B.3 "Pascal" Language Program EXample ...
B.4 "Quick Basic" Language Program EXample ...
B.5 "Interpreted Basic" Language Program Example ..o
B.6 "TopSpeed Modula-2" Language Program Example.............ooooinin.
B.7 "TopSpeed Pascal’ Language Program Example..............cocoooviniiicnn

© Kepco, Inc. -ifi-

PAGE

PAGE
2-1

SECTION 1
INTRODUCTION

1.1 PURPOSE OF MANUAL

This manual describes the installation and operation of KEPCO's TMA PC-27 Power Module
Control Interface Board and associated software. The associated software is contained on a
Kepco-supplied disk and allows operation of the TMA PC-27 with various languages.

This manual contains five sections and an appendix. Section 1 contains a General Description.
Section 2 describes Equipment Configuration. Section 3 describes Installation. Section 4
describes Programming With The PC-27. Section 5 describes the Kepco Program Manager. An
appendix contains program examples in various languages.

1.2 GENERAL DESCRIPTION

The Kepco TMA PC-27 power module control interface board (see Figure 1-1) will allow you to
communicate with up to 27 of Kepco’s MAT line of programmable linear DC supplies from an
IBM (or compatible) computer. The board plugs into any expansion slot in the computer.

The associated software can either be installed as a TSR (Terminate Stay Resident) or stand
alone program. As a TSR it can be accessed by many popular programming languages,
including the following:

TURBO C

QUICKC

POWER C

TURBO PASCAL
QUICK PASCAL
TopSpeed PASCAL
QUICK BASIC
INTERPRETED BASIC
TopSpeed MODULA-2

©Kepco, Inc. 1-1

Figure 1-1. Model TMA PC-27

©Kepco, Inc. 1-2

SECTION 2
EQUIPMENT CONFIGURATION

21 BASE ADDRESS AND HARDWARE INTERRUPT LEVEL

Configuring the TMA PC-27 board includes making selections to the following features:

Base Address
Hardware Interrupt Level

The TMA PC-27 is supplied with factory default settings of base address 208 (hex) and hardware
interrupt level 2 (IRQ2). If desired (e.g. defaults in conflict with other programs or hardware),
optional settings are possible (see Table 2-1). Figure 2-1 illustrates the location of the base
address and hardware interrupt jumper blocks on the TMA PC-27 for alternate settings.

ITEM DEFAULT OPTIONAL
Base Address (Hex) 208H Within the range
of 200H to 3F8H,

refer to Table 2-2.

interrupt Level (IRQ) 2 2t07

Table 2-1. Base Address and Hardware Interrupt level

©Kepco, Inc. 2-1

\' INTERRUPT LEVEL SELECTION

BASE ADDRESS SELECTION

Figure 2-1. Base Address and Hardware Interrupt Level Jumper Blocks,
Location

©Kepco, Inc. 2-2

2.2 CONFIGURING THE BASE ADDRESS

The default base address value, 208H, is appropriate for most applications. Examples of jumper
configurations for some of the optional base addresses are shown in Figure 2-2. Refer to Table

2-2 for a complete listing of optional base addresses. In configuring the base address interrupt, a
jumper OUT sets the bit to 1.

Each base address consists of 12 bits (AO through A11) with AD being the least significant bit
(LSB). The 12 base address bits are arranged in three 4-bit groups, corresponding to the three
characters in each base address. Three of the four bits associated with the first and last
characters of all base addresses are preset (e.g. 2 and 8 of base address 208).

Using the base address 208H as an example:

2 (binary 0010) A11is always presetto 0.
A10is always preset to 0.
A9 is always preset to 1.
A8 is selectable via the jumper block
(in this example it is 0).

0 (binary 0000) A7 is selectable via the jumper block.
AB is selectable via the jumper block.
AS is selectable via the jumper block.
A4 is selectable via the jumper block.

8 (binary 1000) A3 is selectable via the jumper block
(in this example it is 1).
A2 is always preset to 0.
A1is always preset to 0.
AQ is always preset to 0.

The six jumper positions on the base address jumper block reflect, in ascending order, the six
accessible bits (A3.through A8). The jumper block position for bit A3 is by the "E1" jumper block
designation on the printed circuit board. :

2.3 CONFIGURING THE HARDWARE INTERRUPT

The default hardware interrupt, "5", is appropriate for most applications. Jumper configurations
for optional hardware interrupts are shown in Figure 2-3.

©Kepco, Inc. 2-3 101703

BIT BIT
A3 A4 A5 A6 A7 A8 A3 A4 A5 A6 A7 A8

P ﬁ’ii

BASE ADDRESS = ' BASE ADDRESS = 250H

(FA TORDEFAT)
EI III EI

EXAMPLE : BASE ADDRESS = 210H EXAMPLE : BASE ADDRESS = 260H

EXAMPLE : BASE ADDRESS = 230H EXAMPLE : BASE ADDRESS = 280H

E1

Figure 2-2. Base Address Jumper Examples

©Kepco, Inc. 2-4

BIT

ADDRESS A8 A7 AB A5 A4 A3

200
208
210
28
220
mgg
230
240 L

YT

* = JUMPER OUT (BIT = 1)

Table 2-2. Optional Base Addresses (Sheet 1 of 2)

©Kepco, Inc. 2-5

BIT

ADDRESS AB A7 AB A5 A4 A3

300
310
38

* k% :t- * :t-:c- x- *x- %

* = JUMPER OUT (BIT = 1)

Table 2-2. Optional Base Addresses (Sheet 2 of 2)

©Kepco, Inc. 2-6

IRQ=2 IRQ=5
(FACTORY DEFAULT)

O O o o o o o o H O o o
o o o o] g o O o o
E2 E2

IRQ=3 IRQ=6
O O o o o o O oo o o
o o o o [O0_gd] ﬂun o o o
E2)

IRQ=4 IRQ=7

Figure 2-3. Hardware Interrupt Level, Jumper Locations

©Kepco, Inc. 2-7 101703

SECTION 3
INSTALLATION

31 TMAPC-27 BOARD

The following steps should be followed when installing the TMA PC-27 board:

A) Turn off the computer and unplug the power cord.

B) Remove the computer cover.

C) Select an empty expansion slot and remove the mounting screw and bracket.
D) Insert the TMA PC-27 board into the slot and replace the cover.

E) Replace the computer cover and connect the power cord.

F) Connect the 9-pin side (J1) of the interface cable (Kepco Part Number 118-0749) to the TMA
PC-27. The other side of the cable can now be connected to the MAT control bus. Pin

assignments for connector J1 are as follows:

Pin2 Ground
Pin3 DATA
Pin7 Ground
Pin 8 DATA

Pins 1,4,5,6,9 No Connection

3.2 TMA PC-27 INTERFACE TO MAT POWER MODULE

One shielded, twisted-pair cable (2 meters long) with a mating connector at each end (Kepco
part number 118-0699) is supplied with each rack adapter (RA 50 or RA 51) and with each full
rack MAT Power Module. The TMA PC-27 Power Module Interface and up to 27 MAT Power
Modules can be connected in a daisy chain configuration (see Figure 3-1). The last (in the daisy
chain) Power Module Control Bus Outlet must be terminated with a terminating connector
assembly (Kepco part number 195-0075) that is supplied with the TMA PC-27.

3.3 DRIVER SOFTWARE

CAUTION
If your computer does not have a hard drive, make a "working" copy of the disk provided.
If your computer has a hard drive, copy the disk onto it. Store the original in a safe place.

One of two command sets may be used to program the TMA PC-27. The two command sets are
CIIL (Control Interface Intermediate language) and KPSL (Kepco Power Supply Language). The
TMA.BAT batch file (included on supplied disk) is used to select which driver is to be used. The
drivers are TMACIIL.EXE (for CIIL command set) and TMAKPSL.EXE (for KPSL command set).
To install the TMA PC-27 driver from the DOS command line, type: TMA and strike the ENTER
key.

©Kepco, Inc. 3-1

To install the PC-27 driver from your AUTOEXEC.BAT file, the statement TMA must be
included in the file, The pregram is then loaded into memory and remains installed until the

W[ﬂ“ﬁ[1§ [§Rogted or reset. The TMA program uses software interrupt 60 (hex) and assumes

hardware interrupt IRQ2 and base address 208. These defaults may be altered by using an
option code when installing the TSR as follows:

-i allows selection of the software interrupt (e.g. TMA -i67 selects software interrupt 67 (hex)).

-h allows selection of the hardware interrupt (e.g. TMA -h3 selects hardware interrupt IRQ3).
Ensure that the hardware level interrupt jumper position coincides with the hardware level
interrupt selection made (see Figures 2-1 and 2-3).

-b allows selection of the base address (e.g. TMA -b200 selects base address 200 (hex)).
Ensure that the base address jumper position coincides with the base address selection made
(see Figures 2-1, 2-2 and Table 2-2).

-s runs a stand-alone, non-TSR program (e.g. TMA -s), which allows direct entry of commands
from the keyboard.
NOTE: Multiple options (e.g. TMA -b200 -h5) are permitted.
The TMA .BAT file may be modified to accommodate alternate settings. For example, from DOS
type:

COPY CON TMA.BAT and strike the ENTER key

TMACIIL -b200 -h5 -i67 and strike the F6 key

Strike the ENTER key to update the file and return to DOS

©Kepco, Inc. 3-2

PERSONAL COMPUTER

™A PC-27
e——— CONTROL BUS
RA 350 375 KHz
360W | 360W | 360W
m n)
RA 51
S60W | 720W
m N]
1080W M
- ——J«——— CONTROL BUS

TERMINATING CONNECTOR

Figure 3-1. TMA PC-27 To MAT Power Module, Interface

©Kepco, Inc.

3-3

SECTION 4
PROGRAMMING WITH THE TMA PC-27

41 GENERAL

With the TMA software loaded, the KEPCO MAT Power Supply Modules may be programmed
over the control bus using CIIL (Control Interface Intermediate Language) or KPSL (Kepco
Power Supply Language) commands. CIIL, defined by military standard 2806763 provides a
common language for instruments used in an automatic test system. KPSL is a simplified
command set based on CIIL. In addition, some functions that are not supported by CIIL have
been included (refer to paragraphs 4.4 and 4.6).

4.2 USING THE PC-27 SOFTWARE

Data is passed to the TMA PC-27 through the use of registers and a software interrupt. Register
AX must be loaded with the value 0 for C, 3 for Pascal, and 4 for Basic (see sample programs in
appendix). Registers BX and ES must be loaded with the address of the data string to be sent.
Following this, software interrupt 60 (hex) must be called. Upon returning from the interrupt, the
AX register will contain a status byte, this value will be zero if execution was normal or a value
other then 0 if the data sent was invalid. if the command sent requires a response, the response
message will be returned in the same data string used for the command, otherwise that data
string will be nulled.

NOTE: Examples for each programming language are contained on the included program disk.
You may use them as a model for your application programs.

4.3 INTRODUCTION TO THE KPL PROGRAM MANAGER

Kepco has provided an alternate way to create application programs quickly and easily. This is
through the use of our own language interpreter, KPL (Kepco Programming Language). KPL is
used at Kepco to create test programs for our products. It provides for instant I/O
communications for the TMA PC-27 and is compatible with National Instruments NI-488 DOS
Handler for the IEEE-488 GPIB. This means if you are controlling other instruments with a
National Instruments IEEE-488 interface card, you can easily communicate with them as well.
Selecting between the TMA PC-27 and the IEEE-488 is a simple matter (refer to paragraph

5.8.6).

KPL can be used to try out different programming ideas, or it can be used for your actual test
programs. It was designed for ease of use and quick results. KPL offers many advantages due to
its modularity and editing features. Because KPL is an interpreted language no time is lost
waiting for the program to recompile every time you make a small change or correct a "bug".
Most test applications do not require the extra speed of a compiled program. From the Manager
environment you can trace through, edit, or run programs. You can also call subroutines directly
or execute whole programs from disk while maintaining variables. Programs may call other
programs without losing data and DOS is only a keystroke away. You can control instruments
directly from the KPL Program Manager menu or read back data by pressing a single key. You
can easily build up a library of routines and execute them from the manager menu or put them
together to create larger programs. Routines are called by names, not meaningless numbers.
Once a program is created and "debugged", it may be executed directly from DOS. Section 5
gives a detailed description of the KPL Program Manager.

©Kepco, Inc. 4-1

44 COMMAND SET SUMMARY
CliL. COMMANDS:

Operation codes (op codes):

Nouns :

FNC
SET
SRX
SRN
INX

FTH
CLS
OPN
IST

CNF
RST
STA

DCS

Noun Modifiers:

KPSL COMMANDS:

VOLT
VLTL

CURR
CURL

SET
FTH
CLS
OPN
IST

CNF
RST
STA

FUNCTION

SET

SET MAXIMUM

SET MINIMUM
INITIATE

FETCH

CLOSE

OPEN

INTERNAL SELF TEST
CONFIDENCE TEST
RESET

STATUS

DIRECT CURRENT SOURCE

VOLTAGE MODE OPERATION
VOLTAGE LIMIT
CURRENT MODE OPERATION
CURRENT LIMIT

SET

FETCH

CLOSE

OPEN

INTERNAL SELF TEST
CONFIDENCE TEST
RESET

STATUS

UTILITY COMMANDS FOR CIIL AND KPSL:

©Kepco, Inc.

REN
GTL
DCL
SO
S1
S2
S3
TO
T1
REST
FO
F1
PO
P1

REMOTE ENABLE

REMOTE DISABLE (GO TO LOCAL)

DEVICE CLEAR

NO SIGNAL ON ERROR

MESSAGE SIGNAL ON ERROR

BEEP SIGNAL ON ERROR

MESSAGE AND BEEP SIGNALS ON ERROR
DON'T SAVE NON CATASTROPHIC ERRORS
SAVE NON CATASTROPHIC ERRORS
SYSTEM RESET

NO ERROR REPORT ON FETCH

ERROR REPORT ON FETCH

REPORT POWER LOSS ONCE

REPORT POWER LOSS CONTINUOUSLY

4-2

Power loss mode 1. Continuously reports a power loss message until power is restored to the
power module.

DELIMITERS
All op codes and operands must be separated by the ASClI space (ASCII value 32).

4.5 CIlIL COMMAND DESCRIPTIONS

4.5.1 FUNCTION Command

FNC - Function Op Code - This operator sets up a power module’s output (stimulus mode), or
sets up the power module to read its output settings (sensor mode).
SYNTAX: FNC DCS :CHnn SET VOLT (stimulus mode)
FNC DCS VOLT :Chnn (sensor mode)

The first operand contains the three (3) letter mnemonic pertaining to the device on the control
bus, in this case DCS (Direct Current Source). If a reading is being set up, the modifier VOLT or
CURR follows.

The next operand is used to select the specific channel of the device being programmed or read
from. The TMA PC-27 can control up to 27 MAT power modules with control bus addresses in
the range of 1 to 31.

4.5.2 SET,SRX,and SRN Commands

SET - Set Op Code -This operator is used in conjunction with FNC (in stimulus mode) to specify
the output mode of the power module being programmed. The first operand is the noun modifier
and the second operand specifies the value.
SYNTAX: SET VOLT value SET CURL value
SET CURR value SET VLTL value

NOTE: A complete command must include FNC DCS :CHnn

i.e. FNC DCS :CH1 SET VOLT 5 SET CURL 2

The first operand field of the command contains the four(4) letter mnemonic for the output mode
of the power module. The choices are:

VOLT VOLTAGE MODE OPERATION
VLTL VOLTAGE LIMIT
CURR CURRENT MODE OPERATION
CURL CURRENT LIMIT

The second operand field of the command contains the value assigned to the chosen output
mode. This value may be specified as accurately as the resolution of the MAT power module
allows (12 bits, or .024% of maximum rated voltage or current). It can be directly specified in
ASCII integer, decimal, or in scientific notation.

There may be two (2) set commands, separated by a space (ASCII 32), for each power module
being programmed. The following are the only allowable combinations:

VOLT with CURL

CURR with VLTL
The limit parameter (CURL or VLTL) may not be set without the main parameter. A polarity sign

may precede the VOLT or CURR value so that the power module’s polarity may be selected.
In the case of Kepco's MAT power modules, the two(2) related Op Codes, SRX and SRN are
functionally identical to the SET command, since there is only one range, 0 - maximum. The

commands are included only for compatibility.
SRX Set Range Maximum
SRN Set Range Minimum

©Kepco, Inc. 4-3

4.5.3 OPEN/CLOSE RELAY Commands
These commands are used to enable or disable the power modules from their loads.

OPN opens the power module relay specified by
the operand.
CLS Closes the power module relay specified by

the operand.
SYNTAX OPN :CHnn
CLS :CHnn

4.5.4 RESET Command

RST - Reset Op Code. This operator is used to return a power module to its power-on state.
The output voltage and current are programmed to zero and the power relay is opened.
SYNTAX: RST DCS :.CHnn

4.5.5 CONFIDENCE TEST Command

CNF - Confidence Test Command - This operator commands the TMA PC-27 to execute the
confidence test procedure defined for the MAT power modules. The procedure consists of
opening all power relays, programming voltage and current to their maximum values, switching
polarity, checking for error flags, then programming voltage and current to zero.

SYNTAX: CNF
The results of CNF may be obtained through the STA command.

4.5.6 INTERNAL SELF TEST Command

IST -Internal Self Test Command. For Kepco's MAT power modules, this command is
functionally equivalent to the CNF command.

4.5.7 STATUS Command

STA - Status Request Op Code - This operator commands the TMA PC-27 to report its present
operating status. Any catastrophic error conditions which exist will be reported, until the error

condition is corrected (refer to paragraph 4-8).
SYNTAX: STA

4.5.8 INITIATE Command

INX-Initiate Op Code - commences a data acquisition process in accordance with the preceding
FENC command. The response to the INX command is a dynamic time-out value, uniess a
catastrophic error condition exists, in which case an error message will be returned. If the
time-out value returned is not zero,this indicates the power module’s output voltage or current
has not yet settled. A time delay should be observed before proceeding with the FTH command
or the command may be repeated until a zero value is returned, but the preceding FNC
command must also be repeated. The advantage of this method is that if the module setties
quickly following the first time-out value returned, the reading may be obtained without need fora
delay.
SYNTAX: INX VOLT (initiate voitage reading)
INX CURR (initiate current reading)

©Kepco, Inc. 4-4

459 FETCH Command

PTH - Petch Op Code - commands the previously designated power module to return the
requested data reading. It must immediately follow an INX command. The value returned is the
value of the output voltage or current, whichever was requested, unless a catastrophic error
condition exists, in which case an error message will be returned (value observed will be in
scientific notation).

SYNTAX: FTH VOLT (fetch voltage reading)
FTH CURR (fetch current reading)

46 KPSL COMMAND DESCRIPTIONS

4.6.1 SET Command

SET - Allows setting of voltage or current
SYNTAX: SETnVxLy

Sets channel n to x volts and the current limit to y amps.
SYNTAX: SETnCxly

Sets channel! n to x amps and the voltage limit to y volts.

4.6.2 FETCH Command

FTH - Allows reading (fetching) of a voltage or current
SYNTAX: FTHVn

Fetches the voltage on channel n.
SYNTAX: FTHCn

Fetches the current on channel n.

4.6.3 CLOSE Command

CLS - Closes a power module’s power relay, which connects the load.
SYNTAX: CLSn
Closes the relay on channel n.

4.6.4 OPEN Command

OPN - Opens a power modules power relay, which disconnects the load.
SYNTAX: OPNn
Opens the relay on channel n.

4.6.5 RESET Command

RST - Resets a power module’s voltage and current to zero and opens its power relay.

SYNTAX: RST n Resets channel n.
RST ALL - Resets all active channels.
Functionally equivalent to the REST utility command.

©Kepco, Inc. 4-5

4.6.6 CONFIDENCE TEST Command
CNF - Perform a confidence test on all active modules. All power relays are opened and each

moJu'e]s vouage anc] édl’l‘ém AM !”5'!“"!! !ﬁ mﬂ" mﬂlﬂmum U3|U@§]ﬂ[] [ﬂ@ﬂ fm[[tD I@ﬂ]

4.6.7 INTERNAL SELF TEST Command

IST - Performs an internal self test on all modules. The command is Functionally equivalent to
the CNF command.

4.6.8 STATUS Command
STA - Returns the current status of the power modules.

4.7 UTILITY COMMAND DESCRIPTIONS

4.7.1 REMOTE ENABLE Command

REN - Remote enable - Puts all power modules in the remote enabled mode, which allows
response to subsequent commands.

4.7.2 GO TO LOCAL Command

GTL - Go To Local - This command disables remote operation and causes the TMA PC-27 to
ignore all subsequent commands except for the REN command.

4.7.3 DEVICE CLEAR Command

DCL - Device clear - This command causes all power modules to be reset to their power on
state, and will initialize any modules which have been added to the control bus since the last
initialization. The command takes about 3 seconds to execute.

4.7.4 SYSTEM RESET Command

REST - System Reset - This command is similar to "DCL", but does not poll all 27 channels to
detect if new modules have been added. Thus, execution time is much faster than the "DCL"
command.

4.7.5 VERSION Command
VER - Returns the version number of the software.

4.7.6 ERROR HANDLING Commands
SO0 Causes no signal to be generated if a catastrophic error condition
is present.

S1 Causes the message "ERROR CONDITION PRESENT !" to be
printed on the screen, following any command to the TMA PC-27, if a catastrophic error condition is

present.

S2 Causes an audible beep to be generated, following any command
to the TMA PC-27, if a catastrophic etror condition is present.

S3 Causes both a message and a beep if a catastrophic error condition
is present.

©Kepco, Inc. 4-6

TO Instructs non-catastrophic error messages to be erased from memory
if any command is sent prior to an STA command.

T1 Instructs non-catastrophic error messages to be stacked in memery
until an STA command is sent.

FO Fetch mode 0. Ignores error conditions when performing a FTH
command.

F1 Fetch mode 1. Reports any error conditions which are present
during a FTH command.

PO Power loss mode 0. Reports a power loss message only once until
power is restored to the power module.

P1 Power loss mode 1. Continuously reports a power loss message
until power is restored to the power module.

NOTE: The defaults are S0, T0, F1 and P1.

48 ERROR MESSAGES

Certain conditions will cause an error message to be generated. These messages are of two(2)
types, catastrophic and non-catastrophic. Catastrophic errors are those in which the condition
may cause damage if not corrected, non-catastrophic errors are less serious. All error messages
are obtained by sending an "STA" command. The message is returned in the same variable that
was used to send "STA". Catastrophic error messages will remain in memory until an "STA"
command is sent, and the error condition is corrected, while non-catastrophic error messages
will be erased as soon as any command other than "STA" is sent to the TMA PC-27.

As required by CIIL, all error messages begin with an ASCIl "F" (FAULT) followed by a 2 digit
code, "07" (HALT). The code that follows (DCSnn) indicates the type of device and the channel
number. The next 3 digit code describes the nature of the fault, "DEV" for device related errors
or "MOD" for non-device errors, such as syntax.

The following messages have the prefix "FO7 DCSnn DEV:":

CATASTROPHIC ERRORS

POWER LOSS The module has lost its power.

CROWBARRED A shut-down occurred due to overvoltage or overcurrent.

OVER TEMPERATURE A shut-down occurred due to thermal causes.

OVERLOAD The voltage or current limit point was exceeded.

VOLTAGE COMPARISON ERROR The output voltage is not within limits (voltage mocde).
CURRENT COMPARISON ERROR The output current is not within limits (current moce).
RELAY NOT OPENED The power relay failed to open.

RELAY NOT CLOSED The power relay failed to close.

POLARITY ERROR The output polarity is not correct.

©Kepco, Inc. 4-7

NON-CATASTROPHIC ERRORS

NOT READY The output voltage or current has not settled.

DEVICE NOT PRESENT The specified module was not present during power-up or during the
last DCL.

DEVICE NOT RESPONDING The module has failed to communicate to the TMA PC-27.
INVALID VOLTAGE RANGE The programmed voltage is outside the module’s range.
INVALID CURRENT RANGE The programmed current is outside the module’s range.
SET MODIFIER ERROR An improper SET command was sent.

INVALID DEVICE ID The selected channel was not between 1-31.

The following non-catastrophic message has the prefix "FO7 DCSnn MOD:"

INVALID COMMAND Improper syntax was used.

©Kepco, Inc. - 4-8

SECTION 5
KPL PROGRAM MANAGER

514 GENERAL

The KPL Program Manager provides a working environment for running, editing, or debugging
KPL programs. It may be called up from DOS by typing KP or KP filename. If filename is
specified, the KPL file with that name will be loaded into the KPL Program Manager, otherwise
no file will be loaded. If you wish only to run a KPL program then type KP Afilename, and the
specified KPL program will be run, after which you will be returned to DOS.

One of the main objectives of KPL is to facilitate input/ output operations to a variety of different
devices, whether they be IEEE-488, Kepco's TMA PC-27, data files, printer or screen. In a test
environment all of these may, and probably will, be used. KPL makes it easy to switch between
any of these devices without having to write lots of programming code. Set up routines and data
acquisition routines may be created for particular instruments, and big projects may be broken up
into smaller modular components without spending lots of time creating complex code.

Routines are easily put together or rearranged to suit the need. Creating a new program doesn't
mean starting from scratch each time or spending hours trying to follow someone else's code in
order to modify it, then more hours debugging it. The KPL program manager allows you to trace
through a program’s execution one step at a time and allows program data to be examined at
each step.

Once the KPL Program Manager has been loaded, a menu will appear. You may now create,
run, edit, or debug a program, or perform various other tasks involving input/output operations.
Any KPL command may be issued directly from the KPL Program Manager environmert.

5.2 USING THE MENU

The following tasks can be performed by selecting the appropriate command from the menu.
A) Selects the active input/output device.

B) Begins execution of the currently loaded program.

C) Restores a program file that had been cleared.

D) lIssues a DEVICE CLEAR to all devices.

H) Defines keys

l) Puts you into program entry mode.

L) Lists the currently loaded program.

M) Toggles the menu on and off.

P) Sends a command to the active device.

Q) Quits the KPL Program Manager and returns to DOS.

R) Inputs data from the active device.

S) Allows execution of DOS commands.

T) Prints the current time and date.

V) Prints information about the most recent file loaded or saved.
b) Continues a program that was interrupted.

c) Clears all variables, or clears a program fite or both.

e) Allows editing of the current program file.

i) Allows insertion of additional commands into the current program file.
I) Lists the program starting from a particular line.

p) Allows execution of a KPL command.

s) Redefines the beginning and end of a program.

t) Allows single stepping of a program.

©Kepco, Inc. 5-1

#) Loads a KPL program, or merges it to the current one.

$) Saves the current program file.

*) Toggles the printer on and off for printer commands.

>) Executes an existing subroutine.

A} Loads and executes a program from disk, then reloads the current program.

?) Display variables

5.3 USING 'HOT KEY®S’

KPL allows you to program up to 20 keys, which will allow you to perform just about any task by
pressing a single key. Once a key is programmed, any time it is pressed, even while a program
is being executed, it will execute the command that was programmed into it. The command may
be any KPL command, which includes loading and running a file, executing a subroutine, etc.
The best way to implement hot keys is to create a KPL program or subroutine to define them;
when the application for which they were called is done, then reset or redefine them. You must
be careful that a program you are running will not need, for some other purpose, the keys you
have assigned as 'hot keys’. See the command section for information on implementation of 'hot

keys'.

5.4 INIT.KPL FILE

Whenever KP is called up, the file INIT.KPL is loaded and run. This is any KPL program which
you have created and is made up of KPL commands. The INIT file may contain setup
information which you may always want executed, such as defining 'hot keys’ , or it may even
call up another KPL program, in which case all you need to do to execute your application from
DOS is to type KP. The program called may be, for example, a control program that allows you
to select from among other KPL programs. The instruction for calling up another KPL program
from within a KPL program is *Milename. Thus, putting this instruction in your INIT.KPL file will
automatically load and run any KPL program. Another method would be to type KP filename,
which would load and run the INIT.KPL file, then load and run the KPL program specified by

filename.

5.5 INITIATING THE IEEE-488 GPIB AND TMA PC-27

In order to use the GPIB it must first be initialized.

The TMA PC-27 may also be instructed to respond when certain IEEE-488 commands are
issued. See the section on GPIB commands for details.

5.6 CREATING PROGRAMS AND SUBROUTINES WITH KPL

KPL was created to allow easy access to program routines that have been previously written
and tested. Once a routine is created the user need not be concerned about its contents, only
about what the routine does. The more programs you write with KPL the more time you may
save, if the programs will perform similar tasks. Creating a routine is quite simple, the following
guidelines may be followed:

A) Choose a name for the routine. The more descriptive the name is, the easier it will be for someone
else to follow the program. The first line of the routine must contain a colon (:) immediately foliowed
by the routine’s name. The routine may have parameters passed to it, these are defined in
parentheses following the name, e.g. :sub(%a,%b). No other instructions are allowed on this line.
The name is used by KPL to locate the routine during program execution and is only read when the
file is loaded or edited. NOTE: Variables in KPL are notated by the % symbol.

©Kepco, Inc. 5-2

B) Enter the programming commands needed. Any line of the program that needs to be jumgped to from
another part of the program may receive a label. Labels are globally known to the whole program and
should, therefore, be chosen carefully. Routine names and labels are functionally the same. A given
label or name should be used in only one place for any given program. General terms such as :NEXT
should be avoided and might better be replaced with ones such as :NEXT_READ or :NEXT_OUT.

C) Terminate the routine with a return instruction. The symbol for this is <. Certain routines may have to
return to a different place from where they were called, so a label may follow such as <TOP.

D) The main body of a KPL program may or may not begin with a label but if subroutines follow it, then it
must terminate with the symbol < . This will terminate the program unless it was called from another
program, in which case the calling program will be reloaded and will continue from where it left off. It
is good practice to terminate all programs with a <. The symbol << terminates a program, even if it is
in the middle of a subroutine. Control will return to the calling program if there was one otherwise the

program will terminate.
E) A KPL program may have up to 500 lines. However, any KPL program may call another one while

retaining all data in memory, so that virtual longer programs are possible. In fact, the called program
may also call a program and so on up to 5 programs deep. Each program will return to the program

that called it.

5.7 KPL EDITOR

The editor allows you to make changes in your program. ltis invoked by striking e. You may
start at the top of the program by striking the ENTER key or you may go directly to any line by
entering the line number. You may also go to any label by entering a : followed by the label
name. The editor commands are defined at the top of the screen. You may add lines, delete lines
or alter lines. To add new lines to the end of the program use the i command from the KPL
Program Manager menu and press enter for the line number. Use | from the KPL Program

Manager menu to start entering a new program.

58 KPL COMMANDS AND FEATURES

The following section describes the KPL commands and how to use them to create KPL
programs. More than one command may be puton a line by separating the commands by the |
symbol. Comments may be inserted by using the // symbol.

5.8.1 Calling Subroutines and Programs
COMMAND DESCRIPTION

A filename Load and run a program, then return to the current program.
>> Enter and execute a KPL command.

>subname (a,b) Execute the named subroutine, passing parameters
a and b. Any number of parameters may be passed.
Variables or direct values may be used. The number of
parameters should agree with the number defined in the
subroutine. Each value will be assigned to the
corresponding variable defined in the subroutine.

< Terminate a routine and retumn to where it was called from.
<|abel Terminate a routine and return to the location of the
given label.
<Mn Terminate a routine and return to location of the last MJn
command.
tfcommand Shell to DOS and execute a DOS command or run a
file from DOS.
<< Terminate program.

©Kepco, Inc. 5-3

5.8.2 Defining Variables

Variables in KPL are specified by use of the % symbol. Data typing is done automatically,
depending on the operation being done. Variables may be operated on mathematically or may be
treated as character strings, depending on the KPL instruction used. The total number of digits
used before and after the decimal is fixed by the N command. The default value is NO, which
specifies that all math operations will return only integer values. If a non-integer value is desired,
use the N command to specify how many digits you need. Arrays may be created by attaching a
variable suffix to a variable name. For instance, if %ARY is defined as MEASURED and
°%INDEX is defined as 3 then the array element MEASURED.3 may be represented by the
symbol %ARY.%INDEX. The following % commands may be used.

COMMAND DESCRIPTION

%A=n Create a variable.

%A+n Add n to the value of %A.

%A-n Subtract n from the value of %A.

%A™n Multiply %A by n.

%A/ Divide %A by n.

%A&%B Append %B to %A.

%A@n Redefine %A starting with the nth character.

%A@-n Truncate n characters from %A.

%A.%B=n Define an array element whose name is defined by %A
and element # by %B.

%A.=n Assign value n to the variable whose name is defined by %A

Note: n may also be a variable

5.8.3 Built In Variables

%rc_str Contains the last data string received from the active device.
%xpos The current x coordinate of the cursor.
%ypos The current y coordinate of the cursor.

5.8.4 Comparing Data Strings

One of the more frequent tasks a program must perform is to compare a response or a data
value to a known or expected one. This is done in KPL by the use of the * symbol. If the items
agree with each other the next program line is skipped, otherwise it is executed. The opposite will
be true if *! is used. By making the command on the next line a jump instruction, the program can

then decide between two paths.

COMMAND DESCRIPTION

*n Jump if received data matches n.

*In Jump if received data doesn’t match n.

*%A=n Jump if %A matches n.

*%A>n Jump if %A is greater than n.

*%A<n Jump if %A is less than n.

*Dn, *DMn Jump if the value of received data equals n or the value
in memory n within the limits set by the S command.

*In Jump if counter value is greater than or equal to n.

*Kn1n2n3... Jump if the key pressed matches any of the listed keys
n1, n2, n3 etc.

*K/n Jump if the ASCII code of the key pressed is n
(e.g. \32 is a space)

*Ln Jump if the length of received data equals n.

*Rn Jump if bus status equals n

Note: n may also be a variable. The ! symbol may be used for any of the cases to reverse the result.

©Kepco, Inc. 54

5.8.5 GPIB Commands
COMMAND DESCRIPTION

fl Initiate the GPIB.
/K Instruct TMA PC-27 to respond to the commands
IC, /D, IR, and /L.
B Gheck bus status.
/C Selected Device Clear (TMA command DCL).
/D All Devices clear (TMA command DCL).
/EQ Set end of string to none.
/E1 Set end of string to cr (ASCII 13).
/E2 Set end of string to If (ASCII 10).
/E3 Set end of string to cr If (ASCIl 1310).
IF Send Interface Clear.
/L Set Remote line false (local mode) (TMA command GTL).
/P Conduct a Serial Poll.
R Set Remote line true (remote mode).(TMA command REN).
/Tn Set the time-out value to n.

5.8.6 Selecting An Active Device

The active device will determine where to direct all input/output operations. It may be the TMA
PC-27, a GPIB instrument, a data file, the printer or the screen. Thus any routine’s output may
be directed to a device such as printer or screen in order to test the routine, then redirected
elsewhere by changing the active device.

COMMAND DESCRIPTION
A Selects the screen (output only).

ATMA or @TMA Selects the TMA PC-27, this is the default device if no other device is selected.
ADEVn or @DEVn Selects an IEEE-488 device defined by IBCONF (National Instruments

GPIB software).
A%dev or @%dev Selects the device defined by a variable, in this case, %dev.

AP or @P Selects the printer (output only).
AF filename Opens the file named by filename and closes any previously
opened file.

NOTE: files are written to or read from sequentially. The first operation done deterrnines the
read/write mode and may only be changed by another AF command.

5.8.7 1/0 Commands
COMMAND DESCRIPTION

'data string Sends a data string to the active device.

The string may be made up partially or entirely of variables.
R Receives a data string from the active device.
R%var Receives data and assigns it to a variable, %var in this case.
RP Receives data and prints it to the screen.
RM,RMn Receives data and stores it in memory n or memory 0 if

n is not specified.
R* Receives data and does a compare. See Comparing

Data Strings (refer to paragraph 5.8.4).

5.8.8 Creating An Audible Beep

COMMAND_ DESCRIPTION
Bn Causes a BEEP of n counts.

©Kepco, Inc. 5-5

5.8.9 Creating A Time Delay

Time delays may be created anywhere in a program using the D command as follows:
COMMAND DESCRIPTION
Dn Causes a time delay of n seconds.
Dmn Causes a time delay of n milliseconds.

Note: n may be a variable , e.g. D%T

5.8.10 Getting Input From The Keyboard

Variables may be input from the keyboard as follows:

COMMAND

G %A message Print message prompt and wait for input.
G message %A Same as above.

G %A %B Print variable %B and wait for input of %A.

G %A.%B %A%.%B Print variables %A and %B separated by a and
wait for input of array element %A.%B.

W message Display a message (optional) and wait for a key
to be pressed.

5.8.11 Defining 'Hot Keys’

COMMAND DESCRIPTION

HNnCOMMAND Program key n to execute the KPL command indicated.
Hn Unprogram key n. see also Clearing Hot Keys
(refer to paragraph 5.8.14)

5.8.12 Using The Built In Counter

There is a built-in counter, that may be used for controlling a program process as follows:
COMMAND DESCRIPTION

| Increment the counter by one.

iC Clear the counter.

IMn Retrieve a counter value from memory n.see also
MEMORY COMMANDS (refer to paragraph 5.8.15)

5.8.13 Jumping To Another Part Of A Program
COMMAND DESCRIPTION

J:.LABEL Jump to the specified label.

J%L Jump to a label named by a variable, %L.

JN Jump to the next line.

Jn Jump to line n.

JMn Jump to location of MJn command. See also
MEMORY COMMANDS

©Kepco, Inc. 5-6

5.8.14 Clearing The Keyboard Buffer, 'Hot Keys’, And The Menu

COMMAND DESCRIPTION

K Clears keyboard buffer.

KH Clears all 'hot keys'.

KM Turns off the KPL Program Manager menu.

5.8.15 Memory Commands

There are 10 memory locations that can be used for storing certain information temporarily, for
later retrieval. When a program needs to run as fast as possible, using one of these memory
locations is better than using a variable. Variables must be searched by location, which takes
more time.

C ND DESCRIPTION

Min Store counter value.

Mdn Store current program line for jumping back to by the
command.

MKn Store currently pressed key.

MRn Store currently received data.

MTn Store current time.

M%var Transfer contents of memory O to a variable, in this case
%var.

M=%var Store a variable in memory 0. Note: Valid values for n are

0-9. If nis left out location 0 is used.

5.8.16 Setting Precision

This command sets the number of digits to use when performing math operations on variables.
The variable is padded with zeros if less digits are generated. This is also useful in formatting
data for printout. After executingan N instruction, any variable may be reformatted by multiplying
it by 1 (i.e. %a*1).

COMMAND DESCRIPTION

Nx Set the minimum # of digits to be used when math is
performed on a variable (x=0 for integers).

©Kepco, Inc. 57

5.8.17 Printing To The Screen

COMMAND

P text

P! text

P; text

Pi\n

PB

PC x,y text

PF n%A n%B

P!

PL x,y text
PMn

PR

PT

Lx,y

DESCRIPTI

Print text to the sereen, The text may contain variables.

Clear the screen and print text (the text is optional).

Print text and remain at the last screen position.

Print an ASCII character, n is the ASCII code for the character.

Print the GPIB status after a /B or /P command.

Go to screen location x,y, clear the line and print text at
that location. x is the column (1-25) and y is the row (1-80).
Print formatted text, using n characters for each variable
indicated and padding with spaces.

Print the current value of the counter.

Print text at screen location X,y.

Print contents of memory n(0-9).

Print last data received by R command.

Print the current time.

Place cursor at location x.y.

The % symbol may be used at the end of a variable if no space is desired e.g. P %A%%B will
print the variables %A and %B with no space between. If spaces follow the text, the | may be
used e.g. P; Enter value |. Another command does not necessarily have to follow a |.

5.8.18 Printing To The Printer

The printer commands are the same as the screen commands. The P is replaced by the ?

symbol.

COMMAND DESCRIPTION

? text

N

?; text

7B

?F n%A n%B
2

?Mn

7R

T

Print text.

Print a form feed, go to next page.
Print text but no line feed.

Print GPIB status.

Print formatted text.

Print the current value of the counter.
Print contents of memory n.

Print last data received by R command.
Print current time.

5.8.19 Setting Tolerance

COMMAND
Sn

DESCRIPTION

Set the tolerance range for the *D command. n may
be a variable.

5.8.20 Video Display Commands

The following commands may be used to alter the video display screen characteristics.

COMMAND
VBn

VvTn
VWx1,y1,x2,y2

VCn

©Kepco, Inc.

DESCRIPTION

Set background color.

Set text color.

Set display window limits. Full screenis 1,1 ,80,25.

x1,y1 is the upper left corner, x2,y2 is the lower right corner.
Select cursor type n (0=no cursor, 1=normal cursor,

2=solid cursor)

5-8

APPENDIX A
QUICK CHECKOUT

A.1 Getting Started

A control menu program has been provided on the program disk, in order to speed up the time
required to check out your set-up. The program is written in KPL and uses the KPSL. driver for
the TMa PC-27.

Follow these steps to get started:

1) Install your TMa PC-27 following the instructions in your manual.

2) Boot your PC with DOS and press the caps lock key.

3) [Insert your program disk into drive A or B and make that the default drive.
i.e. type A: (for drive A) or type B: (for drive B).

4) Connect the MATSs to the control bus and turn their power on.

5) Atthe DOS prompt type "demo” and press the enter key. The KPSL
driver will be loaded into memory and a menu will appear on the screen.

6) Selections may be made by using the up/down arrow keys or by
pressing the appropriate letter for each item. The item letter will be
highlighted and you may then press the enter key to select that item.

7) The left/right arrow keys will change the channel # from any position
on the menu and the data will then reflect the new channel. This will
allow you to quickly program all channels.

The control keys function as follows:
[N] Allows manual selection of any channel
[V] Allows entry of a new voltage value
[C] Allows entry of a new current value
[M] Toggles the selected channel between voltage and current mode
operation.
[R] Toggles the state of the output relay
[P] Allows manual entry of any KPSL command. Refer to the TMa PC-27 manual for a complete listing

of all commands

[X1 Toggles between auto and manual execute mode. In auto mode,
voltage and current settings are programmed as soon as they are
entered. In manual mode, voltage and current values for each channel
may be set up first then executed by pressing the F1 key.

[T] Toggles between continuous reading or manual reading of the output
voltage and current. In manual mode the F2 key is used to read the
outputs.

[S] Toggles between continuous reading and manual reading of the system status. In manual mode the
F3 key is used to check status.

[E] Allows automatic resetting of all channels, when hardware error
conditions such as an overload are reported during a status check.
The F4 key allows manual resetting of all channels at any time.

©Kepco, Inc. A-1

APPENDIX B
PROGRAMMING

B.1 KPL Programming Examples
B.1.1 Init.KPL File To Initialize IEEE-488 And TMA PC-27

/1 // initialize IEEE

/F // interface Clear

/K // Initialize TMA PC-27
/R // Remote Enable

144 // End Program

B.1.2 Read An Array From A Data File

:READ_ARRAY ’
AF MYFILE // OPEN A FILE NAMED MYFILE
G enter name of array ¥NAME © [/ GET THE ARRAY NAME
%X=1{NO // SET INDEX , USE INTEGERS
R SMAX_DATA // READ ARRAY LENGTH
:tNEXT_READ // MARK THIS SPOT

R %NAME .%X // READ DATA ELEMENT

%KX +1 // INCREMENT INDEX
*XOBMAX_DATA // JMP OUT IF X > MAX_DATA
J:NEXT_READ // OTHERWISE JUMP BACK

AF // CLOSE FILE

< // END OF ROUTINE

©Kepco, Inc. B-1

B.1.3 Write To A File

WRITE_FILE
AF TESTDATA
XX=1}NO
'SMAX_DATA
tNEXT_WRITE
*ENAME . %X

X+1

FRXOBMAX_DATA
JINEXT_WRITE

AF
<

B.1.4 Set Up a Menu

:TEST_MENU

VUMV

TEST MENU
1) SEND 2) READ 3) PRINT

ENTER YOUR CHOICE

*!K1}>SEND
*!K2}>READ
*!K3}! “PRINT
J:TEST_MENU
:SEND

P
<

SEND ROUTINE

:READ

P
<

©Kepco, Inc.

READ ROUTINE

OPEN FILE NAMED TESTDATA
SET INDEX, USE INTEGERS
WRITE FILE LENGTH

MARK THIS SPOT

WRITE DATA

INCREMENT INDEX

JMP OUT IF X > MAX_DATA
OTHERWISE JUMP BACK
CLOSE FILE

END

PRINT THE MENU ON SCREEN

WAIT FOR KEY TO BE PRESSED
EXECUTE SUBROUTINE SEND
EXECUTE SUBROUT INE READ
EXECUTE PROGRAM PRINT.KPL

B1.5 Passing Parameters

©Kepco, Inc.

tMAIN

SREAD_DATA // EAD IN THE PROGRAM DATA
%CH=1 // START WITH FIRST CHANNEL
:LOOP

>SETV(%CH, ¥VMAX . %CH, %I MAX . %CH) // SEND DATA

%CH+1 // INCREMENT CHANNEL NUMBER
*CHIXLAST_CH // SEE IF IT'S THE LAST CHANNEL
J:LOOP // JIMP BACK

<

sSETV(%N,%V,%!) // DATA IS PLACED INTO %N,%V,%!
ATMA

'ENC DCS :CH¥N SET VOLT %V SET CURL %I

< // END SETV ROUTINE
:READ_DATA // READ DATA ROUTINE

AF DATA

R %CH_MAX

KCH=1

NEXT_DATA

R %VMAX.%CH

R %IMAX.%CH

%CH+1

*XCHY>XCH_MAX

J:NEXT_DATA

< // END READ DATA ROUTINE

B.2 "C" Language Program Example

#include <stdio.h>
#include <(string.h>
#include <dos.h>

char far *tma(char far *io_str)
{

union REGS inregs, outregs;
struct SREGS segregs;

inregs.x.ax = 0;
inregs.x.bx = FP_OFF(io_str);
segregs.es = FP_SEG(io_str);

int86x(0x60, &inregs, 8outregs, &segregs);
if(outregs.x.ax)
printf("STATUS ERROR \n\a");

return(io_str);
}
void main(void)
int i;
char in_str[128];
dof
printf("enter command - ");
gets(in_str);
izstrien(in_str);
if(i)

printf("%s™, tma(in_str));
Iwhile(i);

©Kepco, Inc. B-4

/*
/%
/*
/*
/*

/*

/%
/*
/*
/*
/*

USE O FOR C LANGUACE
STRING OFFSET

STRING SEGMENT

CALL INTERRUPT 60 HEX
CHECK STATUS BIT FCR 0

RETURN DATA

ENTER DATA

CHECK LENGTH

SEND OUT DATA AND
PRINT RETURNED DATA
EXIT IF NO MORE DATA

B.3 "Pascal” Language Program Example

©Kepco, Inc.

uses crt, dos;

var
io_str : string;
i : word;

function tma (var in_str : string): string;
var r : registers;

begin
r.AX:= 3;
r.BX:= ofs (in_str);
r.ES:= seg (in_str);
intr($60, r);
if (r.AX>0) then
writeln('status error', chr(7));
tma := in_str;
end; { tma }

begin
i:=1; :
while (i>0) do
begin
write('enter command > ');
readin(io_str);
i := length(io_str);
if (i>0) then
write(tma(io_str));
end; { while }
end.

{ USE 3 FOR PASCAL }
{ DATA STRING OFFSET }
{ DATA STRING SEGMENT }
{ CALL INTERRUPT 60 }
{ CHECK STATUS FLAG }

}

{ RETURN DATA

{ ENTER DATA }
{ CHECK LENGTH }
{ SEND DATA AND }
{ PRINT RETURNED DATA }
{ EXIT IF NO DATA }

B.4 "Quick Basic" Language Program Example

©Kepco, Inc.

NOTE: Start QB with the /1 option.
DECLARE FUNCTION TMA$ (INS$)
Do

INPUT “Enter Conmand > ", ond$

i = LEN(amd$)
IF (i) THEN PRINT RTRIM$(TMA$(cmd$))

LOOP WHILE (i)
FUNCTION TMA$ (IN$)
DIM INARY%(9), OUTARY%(9)

DIM IOSTR AS STRING * 128
CONST ax = 0, bx =1, es = 9

{OSTR = IN$

INARY%(ax) = 4

INARY%(bx) = VARPTR(10STR)
INARY¥%(es) = VARSEG(I0STR)

CALL INTB6XOLD(8H60, INARY%(), OUTARY%())
IF OUTARY%(ax) THEN PRINT CHR$(7); “STATUS ERROR™

™A$ = IOSTR

END FUNCTION

'ENTER DATA

'CHECK LENGTH

'SEND DATA AND
"PRINT RETURNED DATA
'EXIT IF NO DATA

REGISTER ARRAYS

1 /O BUFFER

DEF INE REGISTERS
LOAD DATA

USE 4 FOR BASIC
DATA STRING OFFSET
DATA STRING SEGMENT
CALL INTERRUPT 60
CHECK STATUS FLAG
RETURN DATA

B.5

"Interpreted Basic" Language Program Example

NOTE: File TMABAS.INT must be loaded in the same directory as the INTERPRETED BASIC sample program
(IBSAMP.BAS), listed below, for the program to funcion. Both files are contained in the Kepco supplied disk.

©Kepco, Inc.

10 CLEAR, 64511!

20 TMA=64512!

30 BLOAD"TMABAS. INT",TMA

40 POKE(64560!),VAL("8H60")

50 INPUT"Enter Camand > ",D$
60 L%=LEN(D$):IF L%=0 THEN 130
70 T=127-1%:T$=SPACES$(T)

80 D$=D$+T$+""

90 CALL TMA(S%,D$,L%)

100 IF S% THEN PRINT "COMMAND ERROR"
110 PRINT D$

120 GOTO S0

130 END

'MAKE ROOM AT TOP OF MEMORY
'ASSIGN ADDRESS

'LOAD INTERFACE MODULE

'SET INTERRUPT VECTOR TO 60 (HEX)
'ENTER DATA

'CHECK DATA LENGTH

"MAKE LENGTH = 128

B.6 "TopSpeed Modula - 2" Language Program

Example

(* THIS PROGRAM 1S COMPILER-SPECIFIC TO "TopSpeed Modula-2",
AND HAS BEEN TESTED AS FUNCTIONAL WITH V2 r1.04. ¥)

MODULE modsamp;

FROM 10 IMPORT RdStr, WrLn, WrChar, WrStr;

FROM Str IMPORT Length;

FROM SYSTEM IMPORT Ofs, Seg, Registers;

FROM Lib IMPORT Intr;

VAR
result: CARDINAL;

jo_string: ARRAY [0..128] OF CHAR;

PROCEDURE tma(VAR Inp: ARRAY OF CHAR);

VAR r: Registers;
BEGIN
r.AX := 0;
r.BX := Ofs(Inp);
r.ES := Seg(Iinp);
intr(r, 60H); .
IF (r.AX > 0) THEN
WrStr('STATUS ERROR');
wrchar(7C);
Wrin;
END; (* IF *)
END tma;

BEGIN

result := 1;

WHILE (result > 0) DO
WrsStr('Enter Conmand > ');
Rdstr(io_string);
result := Length(io_string);

IF (result > 0) THEN
tma(io_string);
Wrstr(io_string);

END; (* IF *)

END; (* WHILE *)

END modsamp.

©Kepco, Inc.

(* USE 0 FOR MODULA-2
(* STRING OFFSET
(* STRING SEGMENT
(* CALL INTERRUPT 60
(* CHECK STATUS FLAG

(* ENTER DATA
(¥ CHECK LENGTH

(* SEND OUT DATA AND
(* PRINT RETURNED DATA

(* EXIT IF NO DATA

*)

*)

*)
*)

B.7 "TopSpeed Pascal” Language Program
Example

(* Sample Program Using “TopSpeed Pascal” *)
PROGRAM TSPSAMP (1input, output);
import PasDos ¥;
var
io_str : MAXSTRING;
status : Word;
i : Word;

Function TMA(io_str : MAXSTRING): MAXSTRING;

var Regs : Registers;

Begin
With Regs Do
Begin
AX:= 3; { USE 3 FOR PASCAL }
BX:= Ofs (io_str); { DATA STRING OFFSET }
ES:= Seg (io_str); { DATA STRING SEGMENT }
Intr(60H, Regs); { CALL INTERRUPT 60 }
1f(AX > 0) Then { CHECK STATUS FLAG }
WriteLn{'STATUS ERROR', CHR(7));
™A := io_str { RETURN DATA }
End { With Regs Do }
End; { ™A }
Begin

o= 13
while (i>0) DO

Begin
write(‘Enter Command > ');
Readtn(io_str); { ENTER DATA }
i := Length(io_str); { CHECK LENGTH }
If (i > 0) Then { SEND DATA AND }
write(T™A(io_str)); { PRINT RETURNED DATA }
End { While } { EXIT IF NO DATA }

End.

©Kepco, Inc. B-9

